Deep learning based convolutional neural networks (CNNs) for prostate cancer (PCa) risk stratification employ radiologist delineated regions of interest (ROIs) on MRI. These ROIs contain the reader’s interpretation of the region of PCa. Variations in reader annotations change the features that are extracted from the ROIs, which may in turn affect classification performance of CNNs. In this study, we sought to analyze the effect of variations in inter-reader delineations of PCa ROIs on training of CNNs with regards to distinguishing clinically significant (csPCa) and insignificant PCa (ciPCa). We employed 180 patient studies (n=274 lesions) from 3 cohorts who underwent 3T multi-parametric MRI followed by MRI-targeted biopsy and/or radical prostatectomy. ISUP Gleason grade groups (GGG) obtained from pathology were used to determine csPCa (GGG≥2) and ciPCa (GGG=1). 5 experienced radiologists, with over 5 years of experience in prostate imaging, delineated PCa ROIs on bi-parametric MRI (bpMRI including T2 weighted (T2W) and diffusion weighted (DWI) sequences) within the training set (n1=160 lesions) using targeted biopsy locations. Patches were extracted using the ROIs which were then used to train individual CNNs (N1-N5) using the SqueezeNet architecture. The average volume for readerdelineated ROIs used for training varied greatly, ranging between 1106 and 2107 mm across all readers. The resulting networks showed no significant difference in classification performance (AUC= 0.82 ± 0.02) indicating that they were relatively robust to inter-reader variations in ROI. These models were evaluated on independent test sets (n2=85 lesions, n3=29 lesions) where ROIs were obtained by co-registration of MRI with post-surgical pathology, unaffected by inter-reader variations in ROIs. Network performance across D2 and D3 was 0.80±0.02 and 0.62 ± 0.03, respectively. The CNN predictions were moderately consistent, with ICC(2,1) scores across D2 and D3 being 0.74 and 0.54, respectively. Higher agreement in ROI overlap produced higher correlation in predictions on external test sets (R = 0.89, p < 0.05). Furthermore, higher average ROI volume produced greater AUC scores on D3, indicating that comprehensive ROIs may provide more features for DL networks to use in classification. Inter-reader variations in ROIs on MRI may influence the reliability and generalizability of CNNs trained for PCa risk stratification.
Bi-parametric MRI (bpMRI: T2W MRI and Apparent Diffusion Coefficient maps (ADC) derived from diffusion weighted imaging) is increasingly being used to characterize prostate cancer (PCa). However, inter- and intrareader variability hinders interpretation of MRI. Deep learning networks may aid in PCa characterization and may allow for non-invasively distinguishing clinically significant (csPCa: GGG<1) and insignificant (ciPCa: GGG=1) PCa. Recent studies have shown that signatures from peri-tumoral (PT) region on imaging add significant value to those from intra-tumoral (IT) region for disease detection and characterization. In this work, we present a multi-sequence multi-instance learning convolutional neural network trained using 2D patches extracted from PCa regions of interest (ROIs) on prostate bpMRI to distinguish csPCa and ciPCa. The trained classifier is used to extract pooled features from both the IT and PT ROIs, which are then used to train a random forest classifier to distinguish csPCa and ciPCa. We train and test our models using patient studies from two different institutions (n=298) with GGG obtained either from post-surgical specimens or biopsies. Model built using IT (DIT) and PT (DPT) deep features alone resulted in an area under the curve (AUC) of 0.83 and 0.73 respectively, while models computed from IT (RIT) and PT (RPT) radiomic features resulted in an AUC of 0.77 and 0.75 respectively. The models DIP and RIP trained on combination of IT and PT deep features and radiomic features resulted in an AUC of 0.86 and 0.80 respectively. In both cases, we observe that combining IT and PT features helps in improving the overall classifier performance in distinguishing csPCa and ciPCa.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.