In this study, an adaptive scheme for autonomous underwater vehicle systems is developed that utilizes a model of the complex nonlinear dynamics and control of the vehicle to enable detection of sensor faults and failures. Our framework for design of fault identification and risk management, incorporates a neural network-based nonlinear observer to monitor the input and output of the control system for detection of a variety of faults in the sensors. The training occurs online and parameters of the recurrent neural network are updated by an extended Kalman filter. The fault detection and identification system was developed and integrated for a nonlinear model of a Remus-100 underwater vehicle. The results obtained from the numerical simulation shows the system's ability for prompt detection and isolation of a variety of sensor faults. Further study is needed for development of experimental validation and verification and computational efficiency of the proposed algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.