Fused deposition modeling is one of the most popular methods of additive manufacturing (AM). Typically, the thermoplastic polymer in the form of filament is melted in extrusion head and deposited layer by layer to fabricate object directly from 3D model data. Nowadays, FDM technology is also used to fabricate much more complex elements, like structural electronics or 3D printed electronics. Due to that, there is a necessity to develop new composite materials for this technology. In this work, an acrylonitrile butadiene styrene(ABS)/iron powder composite filament for use in 3D printing was fabricated by a two-stage solvent assisted processing method. Homogenously distributed iron powder in filaments with a filler content of 30 and 50 vol %, were fabricated using a single screw extruder machine. A static tensile test was carried out on samples printed from the developed composite materials. To demonstrate the thermal performance of 3D printed elements made with developed composites, exemplary heatsinks were printed. To exposed differences in thermal conductivity depending on iron powder contain, infrared thermography of printed objects was used. The results obtained were compared with the results for pure ABS prints. The research has shown that increasing filler content in composite filament decreases maximum engineering stress of materials but at the same time increase its thermal conductivity. Developed composites can be used to 3D print complicated and complex shaped heatsinks to improve thermal properties of 3D printed electronic circuits and objects.
The screen-printing technique has been widely used in experimental biosensors due to its low cost, scalability and range of manufacturing materials. Various deposition strategies of enzymatic biosensors in thick film technology are being discussed. A brief overview of electrochemical transducers ranging from amperometric to potentiometric, conductometric, impedimetric, coulometric and field-effect based is given, focusing on the most common configurations. Different approaches to immobilization of biological components are shown as well as their advantages and drawbacks. Adsorption, affinity, entrapment, covalent immobilization and cross-linking are methods being discussed to indicate influence on enzyme activity and stability. Example of challenges in enzymatic biosensors manufacturing are presented.
Every year additive techniques are becoming more and more important and popular method of making components. Along with the increasing importance of these techniques, mainly Fused Deposition Modeling technology (FDM), there has been a need to develop new materials that can broaden the scope in which these technologies are used. It is necessary to develop materials with new properties in relation to the standard ones used. Thanks to the addition of metal powders, nanomaterials and other additives to thermoplastic polymers, composites with better magnetic, electrically conductive or heat conductive properties etc. were obtained. This article presents a method for producing polymer composites containing copper powders as the functional phase in order to obtain electrically conducting filaments. Acrylonitrile butadiene styrene (ABS) was used as the matrix of the composite as one of most popular thermoplastic polymer uses in FDM 3D printing. The process of producing the filament, from polymer granulate and metal powder to the finished composite was developed. Composite filaments with a content of 75 to 84,6 wt% of copper were tested. The effect of filling the composite with copper powder on its electrical properties has been studied. Samples with a copper content above 80 wt% showed high electrical conductivity. Electrical conductive paths of the developed composite in the closed polymer housing were printed using the dual extrusion 3D printer.
In this paper a combined technique of screen printing and laser sintering of a paste based on the mixture of silver nanoparticles and silver microflakes is presented. This method is excellent for rapid prototyping or short series production of printed electronics devices. Tests with two different substrates (Polyethylene Terephthalate [PET] and Polyimide [PI] foil) and near infrared diode laser (808 nm) are made. Effects of sintering with different parameters (laser beam power and scanning speed) are presented. Resistances of manufactured patterns are measured and the resistivity is calculated. Possibility of using paste which theoretical sintering temperature is higher than substrate melting point is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.