X-ray Phase-Contrast Computed Tomography (PC-CT) increases contrast in weakly attenuating samples, such as soft tissues. In Edge-Illumination (EI) PC-CT, phase effects are accessed from amplitude modulation of the x-ray beam using alternating transmitting and attenuating masks placed prior to the sample and detector. A large field of view PC-CT scanner using this technique was applied to two areas of cancer assessment, namely excised breast and esophageal tissue. For the breast tissue, Wide Local Excisions (WLEs) were studied intra-operatively using PC-CT for the evaluation of tumor removal in breast conservation surgery. Images were acquired in 10 minutes without compromising on image quality, showing this can be used in a clinical setting. Longer, higher resolution PC-CT images were also taken, with analysis showing previously undetected thinning of tumor strands. This would allow a second use of the system for “virtual histopathology”, outside of surgery. For the esophagus samples, tissues were taken from esophagectomy surgery, where the lower part of the esophagus is removed, and the stomach relocated. For the assessment of ongoing therapy, accurate staging of tumors in the removed esophagus is essential, with the current gold standard provided by histopathology. PCCT images were acquired on several samples and compare well with histopathology, with both modalities showing similar features. Examples are shown where staging of tumor penetration is possible with PC-CT images alone, which is hoped will be an important step in performing the imaging and staging intra-operatively.
The implementation of X-Ray Phase Contrast (XPC) imaging at synchrotrons has demonstrated transformative potential on a wide range of applications, from medicine and biology to materials science. However, translation to conventional laboratory sources has proven more problematic, because of XPC’s stringent requirements in terms of spatial coherence. This has imposed the use of either micro-focal sources, or collimators (e.g. source gratings) where sources with extended focal spots were used. This reduces the available x-ray flux leading to long exposure times, which is often exacerbated by the use of additional optical elements that need to be scanned during image acquisition. Where these elements are placed downstream of the object, they also lead to an increase in the delivered dose.
XPC has also been successfully adapted to full 3D, computed tomography (CT) implementations, which has however exacerbated the above concerns in terms of acquisition times and delivered doses.
We tackled this problem by developing an incoherent approach to XPC that works with non micro-focal laboratory sources without requiring any additional collimation. The method uses one or two low aspect ratio x-ray masks that are built on low-absorbing graphite substrates for maximum transmission through the mask apertures. The combination of this with a “single-shot” phase retrieval algorithm has enabled the development of a lab-based XPC-CT system that can perform a full scan in a few minutes while delivering low radiation doses. The talk will briefly describe how the method works, then show application examples including direct comparisons with the synchrotron gold standard.
Optically scattering phantoms composed of silica microspheres embedded in an optically clear silicone matrix were manufactured using a previously developed method. Multiple problems, such as sphere aggregation, adsorption to the cast, and silicone shrinkage, were, however, frequently encountered. Solutions to these problems were developed and an improved method, incorporating these solutions, is presented. The improved method offers excellent reliability and reproducibility for creating phantoms with uniform scattering coefficient. We also present evidence of decreased sphere aggregation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.