Quantum information science aims to revolutionize existing methods for manipulating data by utilizing the unique features of nonclassical physical phenomena. This control is realized over several platforms, one particular being photonics which employs state of the art fabrication techniques that achieve integrated nanocircuit components. The Hong-Ou-Mandel effect underlies the basic entangling mechanism of linear optical quantum computing, and is a critical feature in the design of nanophotonic circuits used for quantum information processing. We will present some results from an on-chip Hong-Ou-Mandel (HOM) experiment that replaces the conventional beam splitter with a more compact and highly versatile ring resonator allowing greater functionality with an expanded parameter space dubbed Hong-Ou-Mandel Manifold (HOMM). The overarching goal of this work is to demonstrate on-chip, scalable, dynamically configurable quantum-optical interconnects for integration into photonic quantum information processing devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.