IPCC third report says that we have still a lot of uncertainties to predict global warming even using latest GCMs. Regarding atmospheric radiation, uncertainty of the radiative forcing is still large, which is mainly caused by aerosols, clouds, and water vapor interacting among them. National Space Development Agency of JAPAN (NASDA) and Communications Research Laboratory (CRL) started Phase-A study with European Space Agency (ESA) in the EarthCARE project. The objectives of EarthCARE project are to observe vertical and horizontal distributions and physical characteristics of aerosols and clouds from a satellite, and also to measure the precise Earth radiation budget simultaneously. Finally we will be able to evaluate physical processes of clouds and aerosols regarding the radiative budget and forcing. The EarthCARE satellite carries 5 sensors, namely Cloud Profiling RADAR (CPR), Atmospheric LIDAR (ATLID), Multi-Spectral Imager (MSI), Broad Band Radiometer (BBR) and Fourier Transform Spectrometer (FTS). The result of the pre-Phase A study shows the synergy observation benefits using some compensative combinations of sensors, such as CPR/ATLID for clouds, ATLID/MSI for aerosols, BBR/FTS for the radiation budget. NASDA and CRL are studying FTS and CPR, respectively. CPR is a 94GHz RADAR using 2.5m diameter reflector with Doppler measurement mode. The sensitivity is -38dBZ. The vertical and horizontal resolution is 100 m, 1 km, respectively. FTS is a Michelson interferometer of which spectral measurement range is from 5.7 μm to 25 μm with 0.5 cm-1 unapodized spectral resolution. FOV is 10 km by 10 km. EarthCARE is planned to be launched in 2008 for 2 years mission. Phase-A study will continue until the end of 2003.
Global Change Observation Mission (GCOM) is a new generation of earth observation program by NASDA. GCOM aims to derive trends in climate system by long term and systematic measurements of atmosphere, ocean, and land. GCOM-A1 is one of the first generation of GCOM satellites to be launched in 2006, which was formerly called ADEOS-3A. GCOM-A1 will carry atmospheric instruments; two Japanese, Ozone Dynamics Ultraviolet Spectrometer (ODUS), and Solar Occultation Fourier transform spectrometer from Inclined Satellite (SOFIS), and one foreign atmospheric instrument and a GPS occultation instrument.
Conference Committee Involvement (2)
GEOSS, CEOS, and the Future Global Remote Sensing Space System for Societal Benefits
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.