The Black Hole Explorer (BHEX) mission will enable the study of the fine photon ring structure, aiming to reveal the clear universal signatures of multiple photon orbits and true tests of general relativity, while also giving astronomers access to a much greater population of black hole shadows. Spacecraft orbits can sample interferometric Fourier spacings that are inaccessible from the ground, providing unparalleled angular resolution for the most detailed spatial studies of accretion and photon orbits and better time resolution. The BHEX mission concept provides space Very Long Baseline Interferometry (VLBI) at submillimeter wavelengths measurements to study black holes in coordination with the Event Horizon Telescope and other radio telescopes. This report presents the BHEX engineering goals, objectives and TRL analysis for a selection of the BHEX subsystems. This work aims to lay some of the groundwork for a near-term Explorers class mission proposal.
We present a baseline science operations plan for the Black Hole Explorer (BHEX), a space mission concept aiming to confirm the existence of the predicted sharp “photon ring” resulting from strongly lensed photon trajectories around black holes, as predicted by general relativity, and to measure its size and shape to determine the black hole’s spin. BHEX will co-observe with a ground-based very long baseline interferometric (VLBI) array at high-frequency radio wavelengths, providing unprecedented high resolution with the extension to space that will enable photon ring detection and studies of active galactic nuclei. Science operations require a simultaneous coordination between BHEX and a ground array of large and small radio apertures to provide opportunities for surveys and imaging of radio sources, while coordination with a growing network of optical downlink terminals provides the data rates necessary to build sensitivity on long baselines to space. Here we outline the concept of operations for the hybrid observatory, the available observing modes, the observation planning process, and data delivery to achieve the mission goals and meet mission requirements.
KEYWORDS: Laser communications, Laser communication terminals, Design, Telecommunications, Data communications, Laser systems engineering, Optical communications, Adaptive optics, Space operations, Satellites
The Black Hole Explorer (BHEX) is a mission concept that can dramatically improve state-of-the-art astronomical very long baseline interferometry (VLBI) imaging resolution by extending baseline distances to space. To support these scientific goals, a high data rate downlink is required from space to ground. Laser communications is a promising option for realizing these high data rate, long-distance space-to-ground downlinks with smaller space/ground apertures. Here, we present a scalable laser communications downlink design and current lasercom mission results.
We present the Black Hole Explorer (BHEX), a mission that will produce the sharpest images in the history of astronomy by extending submillimeter Very-Long-Baseline Interferometry (VLBI) to space. BHEX will discover and measure the bright and narrow “photon ring” that is predicted to exist in images of black holes, produced from light that has orbited the black hole before escaping. This discovery will expose universal features of a black hole’s spacetime that are distinct from the complex astrophysics of the emitting plasma, allowing the first direct measurements of a supermassive black hole’s spin. In addition to studying the properties of the nearby supermassive black holes M87∗ and Sgr A∗ , BHEX will measure the properties of dozens of additional supermassive black holes, providing crucial insights into the processes that drive their creation and growth. BHEX will also connect these supermassive black holes to their relativistic jets, elucidating the power source for the brightest and most efficient engines in the universe. BHEX will address fundamental open questions in the physics and astrophysics of black holes that cannot be answered without submillimeter space VLBI. The mission is enabled by recent technological breakthroughs, including the development of ultra-high-speed downlink using laser communications, and it leverages billions of dollars of existing ground infrastructure. We present the motivation for BHEX, its science goals and associated requirements, and the pathway to launch within the next decade.
General relativity predicts that black hole images ought to display a bright, thin (and as-of-yet-unresolved) ring. This "photon ring" is produced by photons that explore the strong gravity of the black hole before escaping its pull along trajectories that experience extreme light bending within a few Schwarzschild radii of the event horizon. The shape of the photon ring is largely insensitive to the precise details of the emission from the astronomical source surrounding the black hole and therefore provides a direct probe of the Kerr geometry and its parameters. The Black Hole Explorer (BHEX) is a proposed space-based experiment targeting the supermassive black holes M87* and Sgr A* with radio-interferometric observations at frequencies of 100 GHz through 300 GHz and from an orbital distance of ~30,000 km. This design will enable measurements of the photon rings around both M87* and Sgr A*, confirming the Kerr nature of these sources and delivering sharp estimates of their masses and spins.
The Event Horizon Explorer (EHE) is a mission concept to extend the Event Horizon Telescope via an additional space-based node. We provide highlights and overview of a concept study to explore the feasibility of such a mission. We present science goals and objectives, which include studying the immediate environment around supermassive black holes, and focus on critical enabling technologies and engineering challenges. We provide an assessment of their technological readiness and overall suitability for a NASA Medium Explorer (MIDEX) class mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.