Ligands made of lipoic acid (LA) appended with a polyethylene glycol (PEG) chain have been used in the aqueous phase growth of luminescent gold clusters with distinct emission from yellow to near-IR, using two different routes. In the first route, the gold-ligand complex was chemically reduced using sodium borohydride in alkaline medium, which gave near- IR luminescent gold clusters with maximum emission around 745 nm. In the second method, LA-PEG ligand was photochemically modified to a mixture of thiols, oligomers and oxygenated species under UV-irradiation, which was then used as both reducing agent and stabilizing ligand. By adjusting the pH, temperature, and time of the reaction, we were able to obtain clusters with two distinct emission properties. Refluxing the gold-ligand complex in alkaline medium in the presence of excess ligand gave yellow emission within the first two hours and the emission shifted to red after overnight reaction. Mass spectrometry and chemical assay were used to understand the photo-chemical transformation of Lipoic Acid (LA). Mass spectroscopic studies showed the photo-irradiated product contains thiols, oligomers (dimers, trimers and tetramers) as well as oxygenated species. The amount of thiol formed under different conditions of irradiation was estimated using Ellman’s assay.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.