MPEG-5 Essential Video Coding Standard is currently being prepared as the video coding standard of ISO/IEC Moving Picture Experts Group. The main goal of the EVC standard development is to provide a significantly improved compression capability over existing video coding standards with timely publication of availability terms. This paper provides an overview of the feature and the characteristics of the MPEG-5 EVC standard.
KEYWORDS: High dynamic range imaging, Video, Cameras, High dynamic range image sensors, Image storage, Image compression, Video coding, Standards development, Image processing, Sensors
High Dynamic Range (HDR) has been a hot topic in decades and recently there are technology breakthroughs in multiple areas including HDR video, HDR photography, and HDR displays. However, if users want to show an HDR image or play an HDR video on a mobile device, a system-level HDR support is required to make it happen. This paper gives a brief introduction to the end-to-end HDR ecosystem covering topics from HDR capture to compression to display, which can benefit not only HDR related module designs in chipset, but also in standard development for more efficient algorithm and metadata proposals.
KEYWORDS: Digital signal processing, Denoising, Video, Signal processing, Detection and tracking algorithms, Algorithm development, Motion estimation, Video processing, Video acceleration, 3D acquisition
The recent development of in the field of embedded systems has enabled mobile devices with significant computation
power and long battery life. However, there are still a limited number of video applications for such platforms. Due to
high computational requirements of video processing algorithms, an intensive assembler optimization or even hardware
design is required to meet the resource constraints of the mobile platforms. One example of such challenging video
processing problem is video denoising.
In this paper, we present a software implementation of a state-of-the-art video denoising algorithm on a mobile
computational platform. The chosen algorithm is based on the three-dimensional discrete cosine transform (3D DCT)
and block-matching. Apart from its architectural simplicity, algorithm allows the computational scalability due to the
"sliding window"-style processing. In addition, main components of this algorithm are 8-point DCT and block matching
which can be efficiently calculated with hardware acceleration of the modern DSP.
Our target platform is the OMAP Innovator development kit, a dual processor environment including ARM 925 RISC
general purpose processor (GPP) and TMS320C55x digital signal processor (DSP). The C55x DSP offers a hardware
acceleration support for computing of the DCT and block-matching intensively used in the chosen denoising algorithm.
Hardware acceleration can offer a significant "speed-up" in comparison to assembler optimization of source codes. The
results demonstrate a possibility to implement an efficient video denoising algorithm on a mobile computational
platform with limited computational resources.
In this contribution, we explore the best basis paradigm for in feature extraction. According to this paradigm, a library of bases is built and the best basis is found for a given signal class with respect to some cost measure. We aim at constructing a library of anisotropic bases that are suitable for the class of 2-D binarized character images. We consider two, a dyadic and a non-dyadic generalization scheme of the Haar wavelet packets that lead to anisotropic bases. For the non-dyadic case, generalized Fibonacci p-trees are used to derive the space division structure of the transform. Both schemes allow for an efficient O(NlogN) best basis search algorithm.
The so built extended library of anisotropic Haar bases is used in the problem of optical character recognition. A special case, namely recognition of characters from very low resolution, noisy TV images is investigated. The best Haar basis found is then used in the feature extraction stage of a standard OCR system. We achieve very promising recognition rates for experimental databases of synthetic and real images separated into 59 classes.
The paper is devoted to design, fast implementation and applications of a family of 8-points integer orthogonal transforms based on a parametric matrix. A unified algorithm for their efficient computations is developed. Derived fast transforms have close coding gain performance to the optimal Karhunen-Loeve transform for the first order Markov process. Among them are also such that closely approximate the DCT-II and, at the same time, have a larger coding gain. For a particular set of parameters, integer transforms with reduced computational complexity are obtained. The comparative analysis of these transforms with the DCT-II in the framework of image denoising and video coding is performed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.