Emerged areas around open-system lakes developing marshes are sensitive environments to climate changes. Under a semi-arid climate the sediments oxidize and dehydrate developing red colors due to iron bearing minerals. Mineral climate-dependent mixtures are spatially traced using hyperspectral imagery. Iron oxide mixtures have been mapped along differentially dehydrated units in the past 2000 years using DAIS spectrometer data. Spectral behavior
interactions and masking from iron and carbonate mixtures suffering desiccation on the sands are described on the imagery and laboratory spectra. Four morphological sandy units can be distinguished, located at different height from the lake coast-line. These units
are related to terraces, eolian deposits and desiccated areas, and appear as both continuous and remnant sparse encased surfaces showing different stages of landscape development. Mineralogical variations on iron oxides and hydroxides developed when sediments are exposed to the atmosphere are easily recorded in the visible and thermal infrared wavelength range in the imagery. Quantitative evaluation of soil color and related mineralogy is attempted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.