Aiming at the shortage of the incremental encoder with simple process to change along the count "in the presence of repeatability and anti disturbance ability, combined with its application in a large project in the country, designed an electromechanical switch for generating zero, zero crossing signal. A mechanical zero electric and zero coordinate transformation model is given to meet the path optimality, single, fast and accurate requirements of adaptive fast change algorithm, the proposed algorithm can effectively solve the contradiction between the accuracy and the change of the time change. A test platform is built to verify the effectiveness and robustness of the proposed algorithm. The experimental data show that the effect of the algorithm accuracy is not influenced by the change of the speed of change, change the error of only 0.0013. Meet too fast, the change of system accuracy, and repeated experiments show that this algorithm has high robustness.
KEYWORDS: Computer simulations, Detection and tracking algorithms, Control systems, Telecommunications, Error analysis, Systems modeling, Control systems design, Precision optics, Precision mechanics, Sensors
Consensus problem is a hot area of multi-agent cooperative control, and has produced many research results.Design consensus algorithm is the focus of multi-agent problem research.However, for high precision situations, multi-agent cooperative control needs more effective consensus algorithm.Since most of the dynamic models in reality are second-order systems, this paper provides a consensus algorithm of second-order multi-agent system with integral, and compares it with the traditional consensus algorithms. The algorithm has higher response rate and consensus accuracy.In order to illustrate the effectiveness of the proposed algorithm, a set of simulation results is provided.
The optical frequencies band is used as information carrier to realize laser communication between two low-orbit micro-satellites in space which equipped with inter-satellite laser communication terminals, optical switches, space routers and other payload. The laser communication terminal adopts a two-dimensional turntable with a single mirror structure. In this paper, the perturbation model of satellite platform is established in this paper. The relationship between the coupling and coordinate transformation of satellite disturbance is analyzed and the laser pointing vector is deduced. Using the tracking differentiator to speed up the circular grating angle information constitute speed loop feedback, which avoids the problem of error amplification caused by the high frequency of the conventional difference algorithm. Finally, the suppression ability of the satellite platform disturbance and the tracking accuracy of the tracking system are simulated and analyzed. The results show that the tracking accuracy of the whole system is 10μrad in the case of satellite vibration, which provides the basis for the optimization of the performance of the space-borne laser communication control system.
In the application of space satellite turntable, the design of balance wheel is very necessary. To solve the acquisition precision of Brushless DC motor speed is low, and the encoder is also more complex, this paper improves the original hall signal measurement methods. Using the logic device to achieve the six frequency multiplication of hall signal, the signal is used as speed feedback to achieve speed closed-loop control and improve the speed stability. At the same time, in order to prevent the E.M.F of BLDC motor to raise the voltage of the bus bar when reversing or braking, and affect the normal operation of other circuit modules, the analog circuit is used to protect the bus bar voltage by the way of energy consumption braking. The experimental results are consistent with the theoretical design, and the rationality and feasibility of the frequency multiplication scheme and bus voltage protection scheme are verified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.