Through the European Defence Agency, the Joint Investment Programme on CBRN protection funded the project AMURFOCAL to address detection at stand-off distances with amplified quantum cascade laser technology in the longwave infrared spectral range, where chemical agents have specific absorptions features.
An instrument was developed based on infrared backscattering spectroscopy. We realized a pulsed laser system with a fast tunability from 8 to 10 μm using an external-cavity quantum cascade laser (EC-QCL) and optical parametric amplification (OPA). The EC-QCL is tunable from 8 to 10 μm and delivers output peak powers up to 500 mW. The peak power is amplified with high gain in an orientation-patterned gallium arsenide (OP-GaAs) nonlinear crystal. We developed a pulsed fiber laser acousto-optically tunable from 1880 to 1980 nm with output peak powers up to 7 kW as pump source to realize an efficient quasi-phase matched OPA without any mechanical or thermal action onto the nonlinear crystal. Mixing the EC-QCL and the pump beams within the OP-GaAs crystal and tuning the pump wavelength enables parametric amplification of the EC-QCL from 8 to 10 μm leading to up to 120 W peak power. The output is transmitted to a target at a distance of 10 – 20 m. A receiver based on a broadband infrared detector comprises a few detector elements. A 3D data cube is registered by wavelength tuning the laser emission while recording a synchronized signal received from the target. The presentation will describe the AMURFOCAL instrument, its functional units and its principles of operation.
Within the framework of the first European Defence Agency (EDA) call for protection against chemical, biological, radiological and nuclear threats (CBRN Protection) we established a project on active multispectral reflection fingerprinting of persistent chemical agents (AMURFOCAL). A first paper on the project AMURFOCAL has been issued last year on the SPIE conference in Warsaw, Poland. This follow up paper will be accompanied by an additional paper that deals specifically with the aspect of the 100 W-level peak power laser system tunable in the LWIR. In order to close a capability gap and to achieve detection at stand-off distances our consortium built a high peak power pulsed laser system with fast tunability from 8 to 10 μm using an external-cavity quantum cascade laser and optical parametric amplification. This system had to be tested against different substances on various surfaces with different angles of inclination to evaluate the ability for an active stand-off technology with an eye-safe laser system to detect small amounts of hazardous substances and residues. The scattered light from the background surface interferes with the signal originating from the persistent chemicals. To account for this additional difficulty new software based on neutral networks was developed for evaluation. The paper describes the basic setup of the instrument and the experiments as well as some first results for this technology.
Remote detection of toxic chemicals of very low vapour pressure deposited on surfaces in form of liquid films, droplets or powder is a capability that is needed to protect operators and equipment in chemical warfare scenarios and in industrial environments. Infrared spectroscopy is a suitable means to support this requirement. Available instruments based on passive emission spectroscopy have difficulties in discriminating the infrared emission spectrum of the surface background from that of the contamination. Separation of background and contamination is eased by illuminating the surface with a spectrally tune-able light source and by analyzing the reflectivity spectrum.
The project AMURFOCAL (Active Multispectral Reflection Fingerprinting of Persistent Chemical Agents) has the research topic of stand-off detection and identification of chemical warfare agents (CWAs) with amplified quantum cascade laser technology in the long-wave infrared spectral range. The project was conducted under the Joint Investment Programme (JIP) on CBRN protection funded through the European Defence Agency (EDA).
The AMURFOCAL instrument comprises a spectrally narrow tune-able light source with a broadband infrared detector and chemometric data analysis software. The light source combines an external cavity quantum cascade laser (EC-QCL) with an optical parametric amplifier (OPA) to boost the peak output power of a short laser pulse tune-able over the infrared fingerprint region. The laser beam is focused onto a target at a distance between 10 and 20 m. A 3D data cube is registered by tuning the wavelength of the laser emission while recording the received signal scattered off the target using a multi-element infrared detector. A particular chemical is identified through the extraction of its characteristic spectral fingerprint out of the measured data.
The paper describes the AMURFOCAL instrument, its functional units, and its principles of operation.
The present study deals with calibration-free analysis of materials by Laser-Induced Breakdown Spectroscopy (LIBS). A
numerical code computes the spectral radiance emitted from a plasma in local thermal equilibrium. The numerical code
includes the calculation of the plasma composition by solving the system of Saha-equations, mass conservation and
neutrality equation. The chemical reactions within the plasma plume are considered, especially in case of organic
materials ablation. The line intensities are then computed. In the present study, the lines are considered to be optically
thin. The modeling of the chemical composition of an organic material and a steel sample is presented. Comparing the
experimental spectra to the computed ones, it was possible to measure the elemental concentrations of the steel with
good accuracy without any requirement of preliminary calibration.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.