SciMeasure, in collaboration with Emory University and the Jet Propulsion Laboratory (JPL), has developed an extremely versatile CCD controller for use in adaptive optics, optical interferometry, and other applications requiring high-speed readout rates and/or low read noise. The overall architecture of this controller system will be discussed and its performance using both EEV CCD39 and MIT/LL CCID-19 detectors will be presented. Initially developed for adaptive optics applications, this controller is used in the Palomar Adaptive Optics program (PALAO), the AO system developed by JPL for the 200' Hale telescope at Palomar Mountain. An overview of the PALAO system is discussed and diffraction-limited science results will be shown. Recently modified under NASA SBIR Phase II funding for use in the Space Interferometry Mission testbeds, this controller is currently in use on the Micro- Arcsecond Metrology testbed at JPL. Details of a new vacuum- compatible remote CCD enclosure and specialized readout sequence programming will also be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.