In inertial confinement fusion system, the intermittent scratches on the polished surface of single-sided polished and bottom surface frosted optical components are complex, and it’s of great difficulty to extract them completely. In order to solve this problem, established in the light-field surface detection system, this paper brings forward a novel intermittent scratch detection method based on adaptive sector scanning algorithm (ASC) cascading mean variance threshold algorithm (MVTH). In the preprocessing step, dividing the original image into subimages with a number of integer multiple of cpu cores so as to fully compress image processing time utilizing parallel processing, using mean filter to balance background and then obtaining binary subimages utilizing morphology and threshold operations, finally, utilizing Two-pass algorithm to label the connected domains of binary subimages. In the detection step, considering the complexity of the pattern of intermittent scratches, ASC is first used for routine intermittent scratches stitching and then supplemented by MVTH. In the verification step, in order to prove that the detected intermittent scratches satisfy the criteria for scratches in human eyes, the method of support vector machine (SVM) pattern recognition is utilized to compare the detected results with the continuous scratch samples detected by human eyes. This algorithm has high degree of parallelism, high speed and strong robustness. The experimental results illustrate that the complete extraction rate of intermittent scratches is 93.59% , the average processing time of single image is merely 0.029 second and the accuracy rate of detection is up to 98.72% by SVM verification.
Aimed at the problem of strong background interference introduced in digital image processing from complex surfaces under industrial defect detection, a method for complex surface defect detection based on human visual characteristics and feature extracting is proposed. Inspired by the visual attention mechanism, defect areas can be identified from the background noise conveniently by human eyes. We introduce the improved grayscale adjustment and frequency-tuned saliency algorithm combined with the salient region mask obtained by dilation and differential operation to eliminate the background noise and extract defect areas. Meanwhile the directional feature matching and merging algorithm is applied to enhance directional features and retain details of defects. Testing images are captured by our established detecting system. Experimental results show that our method can retain defect information completely and achieve considerable extracting efficiency and detecting accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.