Spatial domain multiplexing (SDM), also known as space division multiplexing, adds a new degree of photon freedom to existing optical fiber multiplexing techniques by allocating separate radial locations to different channels of the same wavelength as a function of the input launch angle. These independent MIMO channels remain confined to their designated locations while traversing the length of the carrier fiber owing to helical propagation of light inside the fiber core. As a result, multiple channels of the same wavelength can be supported inside a single optical fiber core, thereby allowing spatial reuse of optical frequencies and multiplication of fiber bandwidth. It also shows that SDM channels of different operating wavelengths continue to follow an output pattern that is based on the input launch angle. As a result, the SDM technique can be used in tandem with wavelength division multiplexing (WDM), to achieve higher optical fiber bandwidth through increased photon efficiency and added degrees of photon freedom. This endeavor presents the feasibility of a hybrid optical fiber communication architecture in which the spectral efficiency of the combined system increases by a factor of “n” when each channel of an “n” channel SDM system carries the entire range of WDM spectra.
Spatial domain multiplexing/space division multiplexing (SDM) can increase the bandwidth of existing and futuristic optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single-mode pigtail laser sources of the same wavelength into a carrier multimode fiber at different angles. The launching angles decide the output of the carrier fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. We launch light from five different single-mode pigtail laser sources (of same wavelength) at different angles (with respect to the axis of the carrier fiber) into the carrier fiber. Owing to helical propagation, five distinct concentric donut-shaped rings with negligible crosstalk at the output end of the fiber were obtained. These SDM channels also exhibit orbital angular momentum (OAM), thereby adding an extradegree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of magnitude: A factor of five using SDM and another factor of two using OAM.
Spatial domain multiplexing (SDM) also known as space division multiplexing adds a new degree of photon freedom to
existing optical fiber multiplexing techniques by allocating separate radial locations to different MIMO channels as a
function of the input launch angle. These independent MIMO channels remain confined to the designated location while
traversing the length of the carrier fiber, due to helical propagation of light inside the fiber core. The SDM technique can
be used in tandem with other multiplexing techniques, such as time division multiplexing (TDM), and wavelength division
multiplexing in hybrid optical communication schemes, to achieve higher optical fiber bandwidth by increasing the photon
efficiency due to added degrees of photon freedom. This paper presents the feasibility of a novel hybrid optical fiber
communications architecture and shows that SDM channels of different operating wavelengths continue to follow the
input launch angle based radial distribution pattern.
Spatial Domain Multiplexing/Space Division Multiplexing (SDM) can increase the bandwidth of existing and futuristic
optical fibers by an order of magnitude or more. In the SDM technique, we launch multiple single mode pigtail laser
sources of same wavelength into a carrier fiber at different angles. The launching angles decide the output of the carrier
fiber by allocating separate spatial locations for each channel. Each channel follows a helical trajectory while traversing
the length of the carrier fiber, thereby allowing spatial reuse of optical frequencies. In this endeavor we launch light from
five different single mode pigtail laser sources at different angles (with respect to the axis of the carrier fiber) into the
carrier fiber. Owing to helical propagation we get five distinct concentric donut shaped rings with negligible crosstalk at
the output end of the fiber. These SDM channels also exhibit Orbital Angular Momentum (OAM), thereby adding an extra
degree of photon freedom. We present the experimental data of five spatially multiplexed channels and compare them with
simulated results to show that this technique can potentially improve the data capacity of optical fibers by an order of
magnitude: A factor of five using SDM and another factor of two using OAM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.