Increased interest in artificial intelligence coupled with a surge in nonvolatile memory research and the inevitable hitting of the "memory wall" in von Neuman computing1 has set the stage for a new flavor of computing systems to flourish: neuromorphic computing systems. These systems are modelled after the brain in hopes of achieving a comparable level of efficiency in terms of speed, power, performance, and size. As it becomes more apparent that digital implementations of neuromorphic systems are far from approaching the brain's level of efficiency, we look to nonvolatile memories for answers. In this paper, we will build up highly-efficient neuromorphic systems by first describing the nonvolatile memory technologies that make them work, exploring methodologies for overcoming statistical device faults, and examining several successful neuromorphic architectures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.