Atmospheric turbulence is a major challenge in long-range imaging of ground-based telescopes, especially in the surveillance of space targets, whose observation distance is usually more than 100 km. In this case, space targets are extremely small in images, occupying less than 0.12% of the total image area, and suffer from severe blur and distortion. Consequently, the accuracy of object detection by both conventional and deep-learning-based methods is significantly hampered. Therefore, this paper proposes an effective framework for detecting space target through atmospheric turbulence. The framework incorporates a shallow deblurring module, a transformer-based feature extractor, and a small region proposal network. The training data comprises simulated degraded images of space target images against celestial backgrounds, as well as a selection of images from the Dotav2 dataset. Testing results show that the proposed framework outperforms the general framework, achieving a mean Average Precision (mAP) improvement of over 20%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.