Bioluminescence tomography (BLT) is a promising molecular imaging tool in monitoring non-invasively physiological and pathological processes in vivo at the cellular and molecular levels. And the radiative transfer equation (RTE) has successfully been used as a standard model for describing the propagation of visible and near infrared photons trough biological tissues. However in practical application, implementation of RTE is extremely complicated for complex biological tissue. And several approximations of the RTE were applied to model the light transport in a turbid medium, such as the diffusion equation (DE) and the simplified spherical harmonic approximation equation (SPN). However, DE provides a high computational efficiency and is only valid in the high scattering region, while SPN has a large demand for memory space, which makes it difficult for SPN to be used on the fine mesh and limits its application in practice. In this paper, we provided a new finite element mesh regrouping-based hybrid light transport model in BLT. Based on the optical property of biological tissue, the finite element mesh were grouped into high-scattering and low-scattering regions. And based on the theory of light transport, hybrid third-order simplified spherical harmonic approximate–diffusion equation model (HSDM) was used to forward light transport model. In numerical simulation experiments, accuracy and efficiency of our proposed method were evaluated. Results showed that the hybrid light transport model achieved a better balance between accuracy and efficiency compared with the DE and the SP3 models. And it was best suited as a light transport model for Bioluminescence Tomography.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.