The Silicon Pore Optics (SPO) technology has been established as a new type of X-ray optics and will enable future X-ray observatories such as Athena and Arcus. SPO is being developed at cosine Research B.V. together with the European Space Agency (ESA) and academic as well as industrial partners. For Athena, about 150,000 mirror plates are required. With the technology spin-in from the semiconductor industry, mass production processes can be employed to manufacture rectangular SPO mirror plates in high quality, large quantity and at low cost. Over the last years, several aspects of the SPO mirror plates have been reviewed and undergone further developments in terms of effective area, intrinsic behavior of the mirror plates and mass production capability. The paper will provide an overview of most recent SPO plate designs, mirror plate production status and plan forward including reflective coating process as well as mass production developments.
Athena, the largest space-based x-ray telescope to be flown by the European Space Agency, uses a revolutionary new modular technology to assemble its 2.6 m diameter lens. The lens will consist of several hundreds of smaller x-ray lenslets, called mirror modules, which each consist of about 70 mirror pairs. Those mirror modules are arranged in circles in a large optics structure and will focus x-ray photons with an energy of 0.5 to 10 keV at a distance of 12 m onto the detectors of Athena. The point-spread function (PSF) of the optic shall achieve a half-energy width (HEW) of 5” at an energy of 1 keV, with an effective area of about 1.4 m2, corresponding to several hundred m2 of super-polished mirrors with a roughness of about 0.3 nm and a thickness of only 150 µm. Silicon Pore Optics (SPO), using the highest grade double-side polished 300 mm wafers commercially available, have been invented to enable such telescopes. SPO allows the cost-effective production of high-resolution, large area, x-ray optics, by using all the advantages that mono-crystalline silicon and the mass production processes of the semi-conductor industry provide. SPO has also shown to be a versatile technology that can be further developed for gamma-ray optics, medical applications and for material research. This paper will present the status of the technology and of the mass production capabilities, show latest performance results and discuss the next steps in the development.
The Silicon Pore Optics (SPO) technology has been established as a new type of X-ray optics enabling future X-ray observatories such as ATHENA. SPO is being developed at cosine together with the European Space Agency (ESA) and academic as well as industrial partners. The SPO modules are lightweight, yet stiff, high-resolution X-ray optics, allowing missions to reach a large effective area of several square meters. These properties of the optics are mainly linked to the mirror plates consisting of mono-crystalline silicon. Silicon is rigid, has a relatively low density, a very good thermal conductivity and excellent surface finish, both in terms of figure and surface roughness. For Athena, a large number of mirror plates is required, around 100,000 for the nominal configuration. With the technology spin-in from the semiconductor industry, mass production processes can be employed to manufacture rectangular shapes SPO mirror plates in high quality, large quantity and at low cost. Within the last years, several aspects of the SPO mirror plate have been reviewed and undergone further developments in terms of effective area, intrinsic behavior of the mirror plates and mass production capability. In view of flight model production, a second source of mirror plates has been added in addition to the first plate supplier. The paper will provide an overview of most recent plate design, metrology and production developments.
Silicon Pore Optics (SPO) uses commercially available monocrystalline double-sided super-polished silicon wafers as a basis to produce mirrors that form lightweight and stiff high-resolution x-ray optics. The technology has been invented by cosine and the European Space Agency (ESA) and developed together with scientific and industrial partners to mass production levels. SPO is an enabling element for large space-based x-ray telescopes such as Athena and ARCUS, operating in the 0.2 to 12 keV band, with angular resolution requirements up to 5 arc seconds. SPO has also shown to be a versatile technology that can be further developed for gamma-ray optics, medical applications and for material research. This paper will summarise the status of the technology and of the mass production capabilities, show latest performance results and discuss the next steps in the development.
Silicon Pore Optics (SPO) has been established as a new type of x-ray optics that enables future x-ray observatories such as Athena. SPO is being developed at cosine with the European Space Agency (ESA) and academic and industrial partners. The optics modules are lightweight, yet stiff, high-resolution x-ray optics, that shall allow missions to reach an unprecedentedly large effective area of several square meters, operating in the 0.2 to 12 keV band with an angular resolution better than 5 arc seconds. In this paper we are going to discuss the latest generation production facilities and we are going to present results of the production of mirror modules for a focal length of 12 m, including x-ray test results.
Silicon Pore Optics (SPO) has been established as a new type of x-ray optics that enables future x-ray observatories such as Athena. SPO is being developed at cosine with the European Space Agency (ESA) and academic and industrial partners. The optics modules are lightweight, yet stiff, high-resolution x-ray optics, that shall allow missions to reach an unprecedentedly large effective area of several square meters, operating in the 0.2 - 12 keV band with an angular resolution better than 5 arc seconds. In this paper we are going to discuss the latest generation production facilities and we are going to present results of the production of mirror modules for a focal length of 12 m, including x-ray test results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.