MicroLED arrays are arrangements of small, individually addressable LED pixels, which offer the possibility to obtain any desired illumination pattern with a high spatial and temporal control. In this work, we report on the advanced fabrication of micro- and nanoLED arrays and their system integration including electronics and graphical user interface. The combination of the chip-based LED array, electronics and software is called a MicroLED platform.
The light density output, homogeneity and switching behavior of the arrays are investigated. The system allows the modulation of the single light sources with a spatial resolution in the micron range and enables the programming of different light patterns at modulation frequencies up to the MHz range. The fully integrated system with microLED array and electronics is shown during presentation are now available as Structured Micro Illumination Platforms (SMILE) for applications from sensing to microscopy to quantum computing.
This work presents a compact low-cost and straightforward shadow imaging microscopy technique based on spatially resolved nano-illumination instead of spatially resolved detection. Independently addressable nano-LEDs on a regular 2D array provide the resolution of the microscope by illuminating the sample in contact with the LED array and creating a shadow image in a photodetector located on the opposite side. The microscope prototype presented here is composed by a GaN chip with an 8x8 array of 5μm-LEDs with 10 μm pitch light sources and a commercial CMOS image sensor with integrated lens used as a light collector. We describe the microscope prototype and analyze the effect of the sensing area size on image reconstruction.
This work presents a first prototype for a new approach to microscopy: a system basing its resolving power on the light emitters instead of the sensors, without using lenses. This new approach builds on the possibility of making LEDs smaller than current technology sensors, offering a new approach to microscopy we plan on developing towards superresolution. The microscope consists on a SPAD based camera, a 8x8 LED array with 5x5 μm LEDs distributed with a pitch of 10 μm, and discrete driving electronics to control them. We present simulations of the system, as well as the first microscope prototype implementing the method, and the results obtained through it.
In this work, we study the optical emission from arrays of InGaN/GaN MQW nanofin and nanorod arrays with sizes ranging from a few micrometers down to sub-wavelength dimensions (i.e., nanometers). Such systems are of interest for developing arrays of single addressable nanoLEDs, which could be used to obtain a visible wavelength super-resolution microscope where the resolution is due to highly localized light spots with sub-wavelength LED-to-LED pitch.
We have used commercial full-wave Maxwell solvers (COMSOL, CST) to calculate the optical field emitted from a single nanoLED in a periodic array for a wavelength of 450 nm. Simulations on 11×11 nanoLED arrays with pitches of 200 nm up to 800 nm and diameters of down to 50 nm have been conducted, in which the dependency of the emission pattern on different structural parameters is studied. In case of small nanoLED array with very narrow pitch, a large optical cross-talk between the activated LED and its neighboring pixels was found. Moreover, in presence of cross-talks, test objects smaller than the LED pitch placed on its surface with influence of near field could potentially be resolved by evaluating the varied emission patterns obtained by different pixel activations. Routes to achieve higher localized optical fields and reduce optical cross-talk have been also investigated by modifying the nanoLED array structures (e.g., by introducing filling material among the LED pixels).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.