Many probabilistic computing frameworks have been developed in recent years due to their potential as faster, energy-efficient alternatives to von Neumann computers for combinatorial optimization problems. In this work, we study the dynamics of a two-spin analog Ising computer implemented with superparamagnetic tunnel junctions (SMTJs). The operational-amplifier-based circuit features a polarity selection and a programmable gain parameter, allowing us to achieve both positive and negative coupling and perform simulated annealing if the gain is treated as inverse temperature. Experiments show that correlation between coupled SMTJs approaches 1 in the high-gain limit. Scaling of this design requires only trivial modifications to the circuit; however, scaling up to large networks of spins requires the development of SMTJs with enhanced properties, suggesting that a co-design approach between devices, architectures and algorithms is necessary.
The low processing temperature of polymeric materials and their wide range of applications make polar polymer based ferroelectric memory very promising and attractive. The typical configuration of the ferroelectric memory cell is the FeFET (Ferroelectric field-effect-transistor) with the polar polymer incorporated in the gate dielectric stack. The memory effect in these devices originates from the polarization of the ferroelectric polymer film and results in a hysteresis of the Id-Vg characteristics. In this study, we fabricated FeFETs based on ultrathin poly-Si channel and CP1- polymer (glass-transition temperature (Tg ~260 C) as the gate dielectric. We investigated the hysteresis of the Id-Vg curves over a wide range of temperatures and frequencies. We observed the effects of thermocycling on the device, such as the change of the hysteresis loop direction at temperatures close to Tg (associated with the change of the dominant hysteresis mechanism), and the simultaneous significant decrease in gate leakage current (which may indicate significant reduction of active defects in the polymer layer). The reversibility of the observed phenomena was also investigated through consecutive thermocycles. Soaking the chip in warm water (60 C) for 3 hours changes the magnitude of the hysteresis loop without changing the direction. The gate leakage current also remains very low. Thus, humidity may play some role in the hysteresis magnitude but not the loop direction, nor does it play any role in the leakage current. In this paper, we will discuss possible explanations of these observations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.