The TolTEC Camera, mounted on the Large Millimeter Telescope (LMT), is a 3-band continuum camera and polarimeter operating at millimeter wavelengths. This paper reviews our progress on the camera commissioning and its inaugural scientific programs, spanning the 2022/2023 commissioning phases and reviewing the winter 2024 science program. We report on mapping speed estimations, optical performance, and the first scientific imaging and polarimetry findings. Additionally, advancements in out-of-focus holography and the integration of two novel maximum likelihood mapmakers are discussed. We conclude with scientific forecasts for the first four TolTEC Legacy Surveys and an overview of the initiatives aimed at facilitating public access to the camera and the broader LMT infrastructure.
KEYWORDS: Observatories, Telescopes, Artificial intelligence, Systems modeling, Data modeling, Astronomy, Control systems, Databases, Advanced process control, Automatic control, Automation, Facility engineering, Data transmission
The Observatorio Astrofísico de Javalambre (OAJ†1 ) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view: the JST/T250, a 2.55 m telescope of 3 deg field of view, and the JAST/T80, an 83 cm telescope of 2 deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousand square degrees, J-PAS†2 and J-PLUS†3 , each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras deployed within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. The first part of this paper elaborates on the organizational advantages realized through the incorporation of Enterprise Resource Planning (ERP) and Computerized Maintenance Management System (CMMS) in our operations. These administrative tools offer a coherent framework for workforce optimization, reducing operational costs, and achieving scientific objectives while maintaining stringent quality standards. Central to this strategy is the employment of a common inventory structure to facilitate seamless interdepartmental processes. The second section explores how emerging technologies, specifically Artificial Intelligence (AI), are integral in achieving a harmonized global framework. AI models and algorithms are instrumental in optimizing various facets of the observatory's operations, thereby furnishing the project with essential high-quality tools for success. This multi-faceted approach not only meets but exceeds operational and scientific targets within budgetary constraints, setting a benchmark for observatory operational efficiency and performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.