AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission adopted in November 2020 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4-year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over 1000 exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are exoplanets made of? How do planets and planetary systems form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering 1.95-3.90 µm (CH0) and 3.90-7.80 µm (CH1) wavelength ranges with prism-based dispersive elements producing spectra of low resolutions R>100 in CH0 and R>30 in CH1 on two independent detectors. The spectrometer is designed to provide a Nyquist-sampled spectrum in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermo-mechanical design of the instrument functioning in a 60 K environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled to below 42 K. This overview will present updated information of phase C studies, in particular on the assembly and testing of prototypes that are highly representative of the future engineering model that will be used as an instrument-level qualification model.
AIRS is the infrared spectroscopic instrument of ARIEL: Atmospheric Remote‐sensing Infrared Exoplanet Large‐survey mission selected in March 2018 as the Cosmic Vision M4 ESA mission and planned to be launched in 2029 by an Ariane 6 from Kourou toward a large amplitude orbit around L2 for a 4 year mission. Within the scientific payload, AIRS will perform transit spectroscopy of over a 1000 of exoplanets to complete a statistical survey, including gas giants, Neptunes, super-Earths and Earth-size planets around a wide range of host stars. All these collected spectroscopic data will be a major asset to answer the key scientific questions addressed by this mission: what are the exoplanets made of? How do planets and planetary system form? How do planets and their atmospheres evolve over time? The AIRS instrument is based on two independent channels covering the CH0 [1.95-3.90] µm and the CH1 [3.90-7.80] µm wavelength range with prism-based dispersive elements producing spectrum of low resolutions R<100 in CH0 and R<30 in CH1 on two independent detectors. The spectrometer is designed to provide spectrum Nyquist-sampled in both spatial and spectral directions to limit the sensitivity of measurements to the jitter noise and intra pixels pattern during the long (10 hours) transit spectroscopy exposures. A full instrument overview will be presented covering the thermal mechanical design of the instrument functioning in a 60 K cold environment, up to the detection and acquisition chain of both channels based on 2 HgCdTe detectors actively cooled down below 42 K. This overview will present updated information of phase B2 studies in particular with the early manufacturing of prototype for key elements like the optics, focal-plane assembly and read-out electronics as well as the results of testing of the IR detectors up to 8.0 μm cut-off.
ARIEL (the Atmospheric Remote-sensing Infrared Exoplanet Large-survey) has been selected by ESA as the next medium-class science mission (M4), expected to be launched in 2028. The mission will be devoted to observing spectroscopically in the infrared a large population of warm and hot transiting exoplanets (temperatures from ~500 K to ~3000 K) in our nearby Galactic neighborhood, opening a new discovery space in the field of extrasolar planets and enabling the understanding of the physics and chemistry of these far away worlds. ARIEL was selected for implementation by ESA in March 2018 from three candidate missions that underwent parallel phase A studies. This paper gives an overview of the design at the end of phase A and discusses plans for its evolution during phase B1, in the run-up to mission adoption.
ARIEL is based on a 1 m class telescope feeding two instruments: a moderate resolution spectrometer covering the wavelengths from 1.95 to 7.8 microns; and a three-channel photometer (which also acts as a fine guidance sensor) with bands between 0.5 and 1.2 microns combined with a low resolution spectrometer covering 1.25 to 1.9 microns. During its 3.5 years of operation from an L2 orbit, ARIEL will continuously observe exoplanets transiting their host star.
This paper presents an overall view of the integrated design of the payload proposed for this mission. The design tightly integrates the various payload elements in order to allow the exacting photometric stability targets to be met, while providing simultaneous spectral and photometric data from the visible to the mid-infrared. We identify and discuss the key requirements and technical challenges for the payload and describe the trade-offs that were assessed during phase A, culminating in the baseline design for phase B1. We show how the design will be taken forward to produce a fully integrated and calibrated payload for ARIEL that can be built within the mission and programmatic constraints and will meet the challenging scientific performance required for transit spectroscopy.
The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next M4 space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of about 1000 known transiting exoplanets using its metre-class telescope, a three-band photometer and three spectrometers that will cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. The payload is designed to perform primary and secondary transit spectroscopy, and to measure spectrally resolved phase curves with a stability of < 100 ppm (goal 10 ppm). Observing from an L2 orbit, ARIEL will provide the first statistically significant spectroscopic survey of hot and warm planets. These are an ideal laboratory in which to study the chemistry, the formation and the evolution processes of exoplanets, to constrain the thermodynamics, composition and structure of their atmospheres, and to investigate the properties of the clouds.
The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey (ARIEL) is one of the three candidate missions selected by the European Space Agency (ESA) for its next medium-class science mission due for launch in 2026. The goal of the ARIEL mission is to investigate the atmospheres of several hundred planets orbiting distant stars in order to address the fundamental questions on how planetary systems form and evolve.
During its four (with a potential extension to six) years mission ARIEL will observe 500+ exoplanets in the visible and the infrared with its meter-class telescope in L2. ARIEL targets will include gaseous and rocky planets down to the Earth-size around different types of stars. The main focus of the mission will be on hot and warm planets orbiting close to their star, as they represent a natural laboratory in which to study the chemistry and formation of exoplanets.
The ARIEL mission concept has been developed by a consortium of more than 50 institutes from 12 countries, which include UK, France, Italy, Germany, the Netherlands, Poland, Spain, Belgium, Austria, Denmark, Ireland and Portugal. The analysis of the ARIEL spectra and photometric data in the 0.5-7.8 micron range will allow to extract the chemical fingerprints of gases and condensates in the planets’ atmospheres, including the elemental composition for the most favorable targets. It will also enable the study of thermal and scattering properties of the atmosphere as the planet orbit around the star.
ARIEL will have an open data policy, enabling rapid access by the general community to the high-quality exoplanet spectra that the core survey will deliver.
ARIEL (the Atmospheric Remote-sensing Infrared Exoplanet Large-survey) is one of the three candidates for the next
ESA medium-class science mission (M4) expected to be launched in 2026. This mission will be devoted to observing
spectroscopically in the infrared a large population of warm and hot transiting exoplanets (temperatures from ~500 K to
~3000 K) in our nearby Galactic neighborhood, opening a new discovery space in the field of extrasolar planets and
enabling the understanding of the physics and chemistry of these far away worlds. The three candidate missions for M4
are now in a Phase A study which will run until mid-2017 at which point one mission will be selected for
implementation.
ARIEL is based on a 1-m class telescope feeding both a moderate resolution spectrometer covering the wavelengths
from 1.95 to 7.8 microns, and a four channel photometer (which also acts as a Fine Guidance Sensor) with bands
between 0.55 and 1.65 microns. During its 3.5 years of operation from an L2 orbit, ARIEL will continuously observe
exoplanets transiting their host star.
The Exoplanet Characterisation Observatory (EChO) mission was one of the proposed candidates for the European Space Agency’s third medium mission within the Cosmic Vision Framework. EChO was designed to observe the spectra from transiting exoplanets in the 0.55-11 micron band with a goal of covering from 0.4 to 16 microns. The mission and its associated scientific instrument has now undergone a rigorous technical evaluation phase and we report here on the outcome of that study phase, update the design status and review the expected performance of the integrated payload and satellite.
The Exoplanet Characterisation Observatory, EChO, is a dedicated space mission to investigate the physics and chemistry of Exoplanet atmospheres. Using the differential spectroscopy by transit method, it provides simultaneously a complete spectrum in a wide wavelength range between 0.4μm and 16μm of the atmosphere of exoplanets. The payload is subdivided into 6 channels. The mid-infrared channel covers the spectral range between 5μm and 11μm. In order to optimize the instrument response and the science objectives, the bandpass is split in two using an internal dichroic. We present the opto-mechanical concept of the MWIR channel and the detector development that have driven the thermal and mechanical designs of the channel. The estimated end-to-end performance is also presented.
KEYWORDS: Sensors, Spectroscopy, Space telescopes, Telescopes, Planets, Stars, Space operations, Mid-IR, Long wavelength infrared, Short wave infrared radiation
The Exoplanet Characterisation Observatory (EChO) is a space mission dedicated to undertaking spectroscopy of
transiting exoplanets over the widest wavelength range possible. It is based around a highly stable space platform with a
1.2 m class telescope. The mission is currently being studied by ESA in the context of a medium class mission within
the Cosmic Vision programme for launch post 2020. The payload suite is required to provide simultaneous coverage
from the visible to the mid-infrared and must be highly stable and effectively operate as a single instrument. In this
paper we describe the integrated spectrometer payload design for EChO which will cover the 0.4 to 16 micron
wavelength band. The instrumentation is subdivided into 5 channels (Visible/Near Infrared, Short Wave InfraRed, 2 x Mid Wave InfraRed; Long Wave InfraRed) with a common set of optics spectrally dividing the input beam via dichroics.
We discuss the significant design issues for the payload and the detailed technical trade-offs that we are undertaking to
produce a payload for EChO that can be built within the mission and programme constraints and yet which will meet the
exacting scientific performance required to undertake transit spectroscopy.
In this paper, we present the design of the MWIR channels of EChO. Two channels cover the 5-11 micron spectral
range. The choice of the boundaries of each channel is a trade-off driven by the science goals (spectral features of key
molecules) and several parameters such as the common optics design, the dichroic plates design, the optical materials
characteristics, the detector cut-off wavelength. We also will emphasize the role of the detectors choice that drives the
thermal and mechanical designs and the cooling strategy.
The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010
listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the coming
decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The
scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing, measure the expansion
history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be
selected through a guest observer program. A Science Definition Team has been established to assist NASA in the
development of a Design Reference Mission that accomplishes this diverse array of science programs with a single
observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet
detection. The observatory, with science goals that are complimentary to the Kepler exoplanet transit mission, is
designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free
floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing
survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the
masses for most detected exoplanets down to 0.1 Earth masses.
KEYWORDS: Exoplanets, Planets, Infrared spectroscopy, Space telescopes, Signal to noise ratio, Space operations, Telescopes, Atmospheric chemistry, Calibration, Spectroscopy
THESIS, the Transiting Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft, is a concept for a medium/Probe
class exoplanet mission. Building on the recent Spitzer successes in exoplanet characterization, THESIS would extend
these types of measurements to super-Earth-like planets. A strength of the THESIS concept is simplicity, low technical
risk, and modest cost. The mission concept has the potential to dramatically advance our understanding of conditions on
extrasolar worlds and could serve as a stepping stone to more ambitious future missions. We envision this mission as a
joint US-European effort with science objectives that resonate with both the traditional astronomy and planetary science
communities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.