The signal induced by a temperate, terrestrial planet orbiting a Sun-like star is an order of magnitude smaller than the host stars’ intrinsic variability. Understanding stellar activity is, therefore, a fundamental obstacle in confirming the smallest exoplanets. We present the Lowell Observatory Solar Telescope (LOST), a solar feed for the EXtreme PREcision Spectrometer (EXPRES) at the 4.3-m Lowell Discovery Telescope (LDT). EXPRES is one of the newest high-resolution spectrographs that accurately measure extreme radial velocity. With LOST/EXPRES, we observe disk-integrated sunlight autonomously throughout the day. In clear conditions, we achieve a R ∼ 137, 500 optical spectrum of the Sun with a signal-to-noise of 500 in ∼ 150s. Data is reduced using the standard EXPRES pipeline with minimal modification to ensure the data are comparable to the observations of other stars with the LDT. During the first three years of operation, we find a daily RMS of 71cm/s. Additionally, having two EPRV spectrometers located in Arizona gives us an unprecedented opportunity to benchmark the performance of these planet-finders. We find a RMS of just 55cm/s when comparing data taken simultaneously with EXPRES and NEID.
The Start-Planet Activity Research CubeSat (SPARCS) is a NASA-funded mission led by Arizona State University, devoted to characterizing the UV emission of low-mass stars. During its nominal one-year mission, SPARCS will observe close to 20 low-mass stars, with the goal of understanding their short and long-term UV variability. SPARCS will be ready for launch in 2025. SPARCS’ payload is a 9-cm telescope paired with two delta-doped charge-coupled devices (CCDs). The data calibration converts the raw instrument counts into an average flux within the two ultraviolet bands (153 - 171 nm, 258 - 308 nm). While the system is only weakly sensitive in the infrared, the target stars are very bright at long wavelengths. This requires careful correction of the data for out-of-band emission. The system is being fully characterized on the ground to provide supporting calibration data. The calibration uses observations of very stable white dwarfs to achieve the 10% photometric accuracy requirement in both bands.
We discuss the final assembly, integration, and testing of the Star-Planet Activity Research CubeSat. SPARCS is a 6U CubeSat mission designed to monitor the dual-channel, far-UV (153-176 nm) and near-UV (258-308 nm) photometric activity of nearby low mass stars to advance our understanding of their evolution, activity, and the habitability of surrounding exoplanets. This paper details the assembly of the SPARCS instrument and the testing process to characterize and validate the performance of the payload prior to spacecraft integration. To test SPARCS, we have established a customized CubeSat AIT laboratory and thermal vacuum chamber at ASU equipped to handle CubeSats requiring meticulous contamination control for work in the FUV. After a brief overview of these facilities and the testing plan, we will detail the methods and data used to verify the performance of SPARCS and generate calibration products to reduce raw flight data to high-quality science products. The result will be the delivery of the first highly sensitive FUV astrophysics CubeSat which will inform exoplanet environments and future observations of these systems by facilities like the Habitable Worlds Observatory.
The Star-Planet Activity Research CubeSat (SPARCS) is a 6U CubeSat under construction that is devoted to the photometric monitoring of M stars in the far-UV (FUV) and near-UV (NUV), to measure the time-dependent spectral slope, intensity and evolution of low-mass star high-energy radiation. We report on the progress made in the assembly, integration and test of the instrument payload at Arizona State University using a custom TVAC chamber and optical stimulus that provides calibration light sources and the custom contamination control environment that the FUV demands. The payload consists of a custom 90mm clear aperture telescope developed by Hexagon/Sigma Space, combined with a dichroic plate to separate the FUV and NUV beams developed by Teledyne Acton and Materion, married with twin focal plane array cameras separately optimized for their bandpasses as developed by JPL.
The Lowell Observatory Solar Telescope (LOST) will fiber feed sunlight into the EXtreme PREcision Spectrograph (EXPRES) to observe the Sun during the day in an analogous way to stars at night. One main hurdle remains in detecting a terrestrial exoplanet orbiting in the habitable zone of a Sun-like star. The star itself can induce radial velocity jitter of several m/s, completely drowning the minuscule signal from an orbiting planet. Understanding this jitter has proved extremely challenging owing to the fact that the majority of stellar surfaces are unresolved. One star for which this isn’t the case is the Sun. Combining our EXPRES solar spectra with spacecraft data from missions like NASA’s Solar Dynamics Observatory and the recently launched Parker Solar Probe will revolutionize our capability to remove the stellar induced RV jitter, greatly increasing our ability to detect a true Earth analog.
KEYWORDS: Ultraviolet radiation, Stars, Atmospheric modeling, Space operations, Space telescopes, Planets, Telescopes, Sensors, Exoplanets, Control systems
Roughly 40 billion M dwarfs in our galaxy host at least one small planet in the habitable zone (HZ). The stellar ultraviolet (UV) radiation from M dwarfs is strong and highly variable, and impacts planetary atmospheric loss, composition and habitability. These effects are amplified by the extreme proximity of their HZs (0.1–0.4 AU). Knowing the UV environments of M dwarf planets will be crucial to understanding their atmospheric composition and a key parameter in discriminating between biological and abiotic sources for observed biosignatures. The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M stars in the far-UV and near-UV, measuring the time-dependent spectral slope, intensity and evolution of low-mass star high-energy radiation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.