The intraoperative assessment of tumor margins of head and neck cancer is crucial for complete tumor resection and patient outcome. The current standard is to take tumor biopsies during surgery for frozen section analysis by a pathologist after H&E staining. This evaluation is time-consuming, subjective, methodologically limited. Optical methods like hyperspectral imaging (HSI) are therefore of high interest to overcome these limitations. We present an approach, that enables delineation of tumor margins with label-free HSI-based histopathological information during surgery using deep learning. We show accuracy on par with traditional intraoperative tumor margin assessment on a data set of seven patients.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.