We report a fully-packaged, on-chip multi-photon-pair source using spontaneous-four-wave-mixing (SFWM) in silicon waveguide spirals. Our source consists of four, two-centimeter long spiral waveguides that are pumped in parallel using a pulsed laser source. We detected a four-fold coincidence rate of 180±20Hz, corresponding to an on-chip coincidence rate of 908±42Hz.
We have demonstrated a packaged Silicon photon pair source. The spiral silicon waveguide source is 500 nm x 220 nm x 2 cm long and was packaged with input/output optical fibers enabling turn-key generation of photon pairs by connecting the input optical fiber to a telecommunication grade laser. In this work, we experimentally characterized the generation of bi-photons by spontaneous four-wave mixing in the Silicon waveguide. The insertion loss of the chip, after packaging, was measured to be approximately 15 dB (3 dB/facet, waveguide propagation loss of less than 1.5 dB/cm, 6 dB from splitters sequence). We investigated the phase matching of the source by wavelength tuning the 1 nm bandpass filters and found that the generated bi-photons have a half-bandwidth of 10 nm about the pump wavelength. We investigate pulse pumping using an actively mode-locked fiber laser with a 500 MHz repetition rate, pulse duration of approximately 30 ps and peak pulse power of 400 mW. Excitation of the pulsed source with a power of 1.4 mW through the chip generated 300 kHz coincidence rates after passing the chip’s output through a series of spectral bandpass filters (-1.4 db in channel 1 and -2.4 dB in channel 2 of filter loss and approximately 85 % efficiency of the detectors: inferred on-chip pair generation rate of 58 MHz). We also investigate two sources with 6 mW of continuous-wave pump power to generate 1550 nm bi-photons, generating 6.0 kHz coincidence rates (inferred on-chip pair generation rate of 2.3 MHz).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.