We demonstrate a simplified Brillouin optical-time domain analysis system based on direct current modulation of a laser diode with an extended measurement range and an enhanced spatial resolution. Slow and periodic frequency dithering is additionally applied to the laser diode to suppress the noise originated from coherent Rayleigh scattering. The distribution of Brillouin gain spectra along a 25 km fiber is successfully measured with a 1 m spatial resolution and an accuracy of σ = 0.78 MHz, confirming its high practicality as a cost-effective solution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.