Frequency combs are an ideal light source to calibrate high resolution spectrographs. For lower resolution spectrographs such as typically used for extragalactic science, combs are not readily available. The mode spacing of combs is too narrow to be resolved at resolutions of a few 1000s and below, and actual comb systems are complex and consequently still very costly. The uneven spacing, non-ideal distribution over the wavelength range, and large dynamic range of line intensities of classical natural emission line sources limit the precision to which low to medium resolution instruments can be calibrated. Fiber Fabry Perot etalons do due not offer the same absolute stability as an actual frequency comb. It has been shown however that, when cross calibrated against a classic source, they pose a viable alternative. We will explore the first application of such a system in the optical with the R ~ 10000 optical Integral Field Unit spectrograph VIRUS-W at the McDonald observatory.
This paper describes the design and performance of a new all optical fiber-coupled Fabry-Perot (FP) acceleration and vibration sensor. This device can be readily multiplexed with up to eight other sensors on a single interrogation channel, and an existing state of the art Fiber Bragg Grating (FBG) swept-wavelength interrogation system can be used to monitor the sensor response. The ease of multiplexing combined with passive operation leads to an effective solution for monitoring vibration at many different points across a wide area, with minimal cost of deployment. We will also describe tests of a fiber conduit security monitoring application.
Optical coherence tomography (OCT) has become a useful and common diagnostic tool within the field of ophthalmology. Although presently a commercial technology, research continues in improving image quality and applying the imaging method to other tissue types. Swept-wavelength lasers based upon fiber ring cavities containing fiber Fabry-P´erot tunable filters (FFP-TF), as an intracavity element, provide swept-source optical coherence tomography (SS-OCT) systems with a robust and scalable platform. The FFP-TF can be fabricated within a large range of operating wavelengths, free spectral ranges (FSR), and finesses. To date, FFP-TFs have been fabricated at operating wavelengths from 400 nm to 2.2 µm, FSRs as large as 45 THz, and finesses as high as 30 000. The results in this paper focus on presenting the capability of the FFP-TF as an intracavity element in producing swept-wavelength lasers sources and quantifying the trade off between coherence length and sweep range. We present results within a range of feasible operating conditions. Particular focus is given to the discovery of laser configurations that result in maximization of sweep range and/or power. A novel approach to the electronic drive of the PZT-based FFP-TF is also presented, which eliminates the need for the existence of a mechanical resonance of the optical device. This approach substantially increases the range of drive frequencies with which the filter can be driven and has a positive impact for both the short all-fiber laser cavity (presented in this paper) and long cavity FDML designs as well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.