KEYWORDS: Photoacoustic imaging, 3D image processing, Photoacoustic spectroscopy, Signal to noise ratio, Tissue optics, Transducers, 3D image reconstruction, Electrodes, Scattering
We introduce novel bias-sensitive piezoelectric transducer (relaxor) arrays for 3D photoacoustic imaging. A 64×64 element relaxor array using a crossed electrode or Top-Orthogonal to Bottom-Electrode (TOBE) wiring configuration is used to receive photoacoustic data from two crossed wires with 17.8 um diameters in an intralipid medium. A 3D image was then reconstructed. By biasing a column and receiving along a row, individual elements can be isolated for readout of signals from all elements using bias-switching-based multiplexing. We demonstrate a reconstruction technique called Hadamard-bias encoding with dynamic receive beamforming in which, rather than using a single column to index an array element, multiple columns are biased simultaneously allowing for more receiving elements and substantially improved SNR. Ongoing work will investigate in vivo imaging. The proposed arrays represent a new paradigm for 3D photoacoustic imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.