Gallium Lanthanum sulphur-oxide (GLSO) glass is an excellent candidate for a window/dome material ought to its wideband transmission window from visible to MWIR. The suitable optical transmission from 0.45-8 microns is supplemented by its superior thermal and mechanical properties to contemporary materials, such as Cleartran™ zinc sulphide. In this work, the properties of GLSO were enhanced by doping with small concentrations of silicon nitride (≤ 0.5 M%), which expanded the transmission window to encompass all the visible spectra. Nano-indentation demonstrated that the hardness and elastic modulus slightly improved. Overall, the improvements demonstrated here make this glass an even better solution when compared to the state-of-the-art for use in single-optic windows and domes.
Chalcogenide glasses are amorphous solid materials formed from chalcogen elements bonding with metals to form typically in binary or tertiary compounds. One family of chalcogenide glasses, based on gallium and lanthanum sulphides, possesses properties important for the infrared (IR) window transmissions and IR applications; these include thermal stability, high solubility of rare earth ions, low phonon energy and high laser damage threshold. Efforts have been made to produce new chalcogenide glasses that can extend the IR transmission window further into the IR. Work has led to the successful melting of a selenium-modified gallium lanthanum sulphide (GLS-Se) glass that can transmit up to 15 μm, however these glasses have, to date, only been demonstrated in bulk glass form. We aim to develop processes for the fabrication of chalcogenide optical fiber to exploit the properties of chalcogenide glasses. Several potential applications include sensing for the civil, medical, and military areas, as these materials offer transmission over much of the molecular fingerprint region (2 to 25 μm). The aim of our work is to understand and control the thermal properties and stability of GLS-Se glasses without compromising their optical properties, in order to produce transparent glass rods and demonstrate the feasibility in fabrication for structured optical preforms by extrusion, as the first step to achieve optical fiber from GLS-Se glass.
Group IV platforms can operate at longer wavelengths due to their low material losses. By combining graphene and Si and Ge platforms, photodetection can be achieved by using graphene’s optical properties and coplanar integration methods. Here, we presented a waveguide coupled graphene photodetector operating at a wavelength of 3.8 μm.
In this work, the effect of adding Se, Te, In, Cs, Y to gallium lanthanum sulphide glass was studied. Structural modifications to the glassy network were achieved by substitution of sulphur, gallium or lanthanum using a melt-quench method in an inert atmosphere. Optical, thermal and mechanical characterisation of the samples revealed tailorable features according to the nature and the amount of glass modifier. In particular, the addition of selenium and tellurium resulted in an extended transmission in the infrared up to 12 μm. Furthermore, for small amounts of selenium, the position of the bandgap did not change significantly, maintaining visible transmission. The addition of indium led to the formation of glasses with longer transmission in the infrared and a cut-off edge around 600nm in the UV-visible range. Over-all, the addition of these modifiers resulted in stronger materials with improved thermal stability and similar mechanical properties to original Ga-La-S glass. The outcome of this work aims to bring a new family of chalcogenide glasses for applications in the infrared and visible range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.