Based on the correspondence between the conventional Poincaré and Bloch spheres, we proposed a higher-order Bloch spheres, which is an extension of the conventional Bloch spheres. By calculating the expectation value of the spin components using the Pauli spin matrices, we found that the new spin state is formed in a ring shape and the orientation of the spin changes depending on the azimuthal angle and topological charge of orbital angular momentum. We also realize the coherent transfer of the azimuth-dependent polarization state of photons to the electron spin state in a GaAs quantum well with a V-shaped three-level system.
Longitudinal optical (LO) phonon has strong electric interaction with particles and fields. Particularly, the interaction in III-nitrides is more significant than that in conventional III-V materials. We show phonon-exciton interaction properties in experimental PL spectrum analysis and theoretical calculation of population transfers of excitonic levels. Thermally nonequilibrium occupations of LO phonons and other modes generated by the LO-phonon decomposition are thought to shift the population distribution in principal quantum number states and kinetic energy to the higher energy side. The radiative exciton recombination lifetime is determined by the population distribution in the excitonic states, which is determined by the balance of the electronic and phononic elementary processes. The interaction of excitons and phonons releases the excess energy to the thermal bath of the lattice system, which sometimes yields negligible lattice temperature increase in the excited region or the nonequilibrium state between electron and phonon systems. A Raman scattering imaging measure is introduced to exhibit spatial transport of phonons generated by the energy relaxation and nonradiative recombination of the excited electrons and holes, where pump-probe measurements are enabled by the simultaneous irradiation of two laser beams. It is found that the phonon transport is blocked by the misfit dislocations located on a Ga0.84In0.16N/GaN heterointerface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.