Recently, highly regular thermochemical laser-induced periodic surface structures (TLIPSS) have become the subject of active studies. TLIPSS are formed in the interference maxima due to the local oxidation of the material irradiated with ultrashort laser pulses and are characterized by the elevation of the relief that forms parallel oxide protrusions. The gas surrounding is expected to affect the morphology and chemical composition of the resulting TLIPSS; however, such effects were rarely studied so far. Here we present the results of the TLIPSS fabrication on glass-supported Si-Ti bilayer films using an astigmatic Gaussian IR femtosecond beam both in air and a nitrogen-rich atmosphere. The formation of ordered TLIPSS with the period of ≈ 920 nm is observed at slow scanning speeds (∼1 μm/s) and low fluences in a nitrogen-rich atmosphere. Raman spectroscopy revealed the presence of TiO2 (rutile) peaks, as well as bands centered at 280 cm-1 and 320 cm-1, which can be related to TiN in amorphous and polycrystalline phase.
Thermochemical direct laser writing of amplitude diffractive structures on thin metal films (Zr, Ta, V, Mo, Cr) at different processing conditions with focused cw laser beam has been experimentally investigated. The study was aimed to select proper material and thickness range ensuring through oxidation, which helps to get higher resolution due to bleaching of the thin absorbing film near peak of intensity distribution of focused laser beam and stopping thermal trace widening. The resistless thermal writing process will be further used as base for developing high-resolution laser lithography system with 266 nm DPSS laser intended for nano-optics fabrication.
Experimental investigation of thermochemical laser-induced periodic surface structures (TLIPSS) formation on metal films (Ti, Cr, Ni, NiCr) at different processing conditions is presented. The hypothesis that the TLIPSS formation depends significantly on parabolic rate constant for oxide thin film growth is discussed. Evidently, low value of this parameter for Ni is the reason of TLIPSS absence on Ni and NiCr film with low Cr content. The effect of simultaneous ablative (with period ≈λ) and thermochemical (with period ≈λ) LIPSS formation was observed. The formation of structures after TLIPSS selective etching was demonstrated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.