Whereas single class classification has been a highly active topic in optical remote sensing, much less effort has been given to the multi-label classification framework, where pixels are associated with more than one labels, an approach closer to the reality than single-label classification. Given the complexity of this problem, identifying representative features extracted from raw images is of paramount importance. In this work, we investigate feature learning as a feature extraction process in order to identify the underlying explanatory patterns hidden in low-level satellite data for the purpose of multi-label classification. Sparse auto-encoders composed of a single hidden layer, as well as stacked in a greedy layer-wise fashion formulate the core concept of our approach. The results suggest that learning such sparse and abstract representations of the features can aid in both remote sensing and multi-label problems. The results presented in the paper correspond to a novel real dataset of annotated spectral imagery naturally leading to the multi-label formulation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.