We developed a multifiber optical probe for oblique polarized reflectance spectroscopy (OPRS) in vivo and evaluated its performance in detection of dysplasia in the oral cavity. The probe design allows the implementation of a number of methods to enable depth resolved spectroscopic measurements including polarization gating, source–detector separation, and differential spectroscopy; this combination was evaluated in carrying out binary classification tasks between four major diagnostic categories: normal, benign, mild dysplasia (MD), and severe dysplasia (SD). Multifiber OPRS showed excellent performance in the discrimination of normal from benign, MD, SD, and MD plus SD yielding sensitivity/specificity values of 100%/93%, 96%/95%, 100%/98%, and 100%/100%, respectively. The classification of benign versus dysplastic lesions was more challenging with sensitivity and specificity values of 80%/93%, 71%/93%, and 74%/80% in discriminating benign from SD, MD, and SD plus MD categories, respectively; this challenge is most likely associated with a strong and highly variable scattering from a keratin layer that was found in these sites. Classification based on multiple fibers was significantly better than that based on any single detection pair for tasks dealing with benign versus dysplastic sites. This result indicates that the multifiber probe can perform better in the detection of dysplasia in keratinized tissues.
Optical spectroscopy has shown potential as a tool for precancer detection by discriminating alterations in the optical properties within epithelial tissues. Identifying depth-dependent alterations associated with the progression of epithelial cancerous lesions can be especially challenging in the oral cavity due to the variable thickness of the epithelium and the presence of keratinization. Optical spectroscopy of epithelial tissue with improved depth resolution would greatly assist in the isolation of optical properties associated with cancer progression. Here, we report a fiber optic probe for oblique polarized reflectance spectroscopy (OPRS) that is capable of depth sensitive detection by combining the following three approaches: multiple beveled fibers, oblique collection geometry, and polarization gating. We analyze how probe design parameters are related to improvements in collection efficiency of scattered photons from superficial tissue layers and to increased depth discrimination within epithelium. We have demonstrated that obliquely-oriented collection fibers increase both depth selectivity and collection efficiency of scattering signal. Currently, we evaluate this technology in a clinical trial of patients presenting lesions suspicious for dysplasia or carcinoma in the oral cavity. We use depth sensitive spectroscopic data to develop automated algorithms for analysis of morphological and architectural changes in the context of the multilayer oral epithelial tissue. Our initial results show that OPRS has the potential to improve the detection and monitoring of epithelial precancers in the oral cavity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.