This paper gives focus on multi-lane detection from traffic cameras, which is based on automatic trajectory analysis and is promoted with advanced deep-learning technologies. Our proposed approach is based on big trajectory data that is robust to complex road scenes, which makes our approach particularly reliable and practical for Intelligent Transportation Systems. By using the deep learning object detection technology, it firstly generates big trajectory data on the road. Then, it detects the stop lines on the road and counts the number of lanes from the trajectories. Next, the trajectories are divided into different groups, where each group contains the trajectories of one lane. Finally, the lanes are fitted by the grouped trajectories. A large number of experiments have been done. The results show that the proposed approach can effectively detect the lanes on the road.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.