Determination of the precise location and degree of condition of the Choroidal neovascularization (CNV) lesion is essential for diagnosation Neovascular age-related macular degeneration (AMD) and evaluation the efficacy of treatment. Given the complimentary contrast mechanisms of Photoacoustic microscopy (PAM) and Optical coherence tomography (OCT), the combination of PAM and OCT imaging could potentially provide much sensitive and specific detection of CNV. In this paper, we validated the opportunity to evaluate the information of laser-induced CNV and presented the in vivo time-serial evaluation of the CNV by simultaneously using PAM and OCT techniques. In vivo PAM and OCT examination was performed after laser photocoagulation applied to the rat fundus at days 1, 3, 5, 7, 14. Time-serial results showed that CNV in rats increased to its maximum at day 7 and decreased at day 14. Evolution of CNV information was given in PAM images with a high contrast and details of high axial resolution OCT images were simultaneously given to show the hyperreflective reaction progress.
Heart pumps blood through the blood vessels to provide body with oxygen and nutrients. As the result, the blood flow, volume and oxygenation in arteries has a pulsatile nature. Measuring these pulsatile parameters enables more precise monitoring of oxygen metabolic rate and is thus valuable for researches and clinical applications. Photoacoustic microscopy (PAM) is a proven label-free method for in vivo measuring blood oxygenation at single blood vessel level. However, studies using PAM to observe the pulsatile nature of blood oxygenation in arteries were not reported. In this paper, we use optical-resolution PAM (OR-PAM) technology to study the blood oxygenation dynamics of pulsatile arteries. First, the ability of our OR-PAM system to accurately reflect the change of optical absorption in imaged objects is demonstrated in a phantom study. Then the system is used to image exposed cortical blood vessels of cat. The pulsatile nature of blood volume and oxygenation in arteries is clearly reflected in photoacoustic (PA) signals, whereas it’s not observable in veins. By using a multi-wavelength laser, the dynamics of the blood oxygenation of pulsatile arteries in cardiac cycles can be measured, based on the spectroscopic method.
KEYWORDS: Blood, Photoacoustic microscopy, Blood vessels, Oxygen, Monte Carlo methods, Absorption, Tissues, Photoacoustic spectroscopy, Sensors, In vivo imaging
Accuracy of photoacoustic signal is the crux on measurement of oxygen saturation in functional photoacoustic imaging, which is influenced by factors such as defocus of laser beam, curve shape of large vessels and nonlinear saturation effect of optical absorption in biological tissues. We apply Monte Carlo model to simulate energy deposition in tissues and obtain photoacoustic signals reaching a simulated focused surface detector to investigate corresponding influence of these factors. We also apply compensation on photoacoustic imaging of in vivo cat cerebral cortex blood vessels, in which signals from different lateral positions of vessels are corrected based on simulation results. And this process on photoacoustic images can improve the smoothness and accuracy of oxygen saturation results.
Laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) has a high application potential in ophthalmology and other clinical fields because of its high resolution and imaging speed. The stationary unfocused ultrasonic transducer of this system decides the efficiency and field of view (FOV) of photoacoustic signal detection, but the refraction and attenuation of laser generated photoacoustic signal in different tissue mediums will cause signal strength and direction distribution uneven. In this study, we simulated the photoacoustic signal propagation and detection in compound medium models with different tissue parameters using k-space method based on LSOR-PAM imaging principle. The results show a distance related signal strength attenuation and FOV changes related to transducer angle. Our study provides a method for photoacoustic signal detection optimization for different complex tissue structure with LSOR-PAM.
In this work, we set up a denoising module to improve the imaging result for the photoacoustic microscopy (PAM) by improving the signal noise ratio. This module contains a series of data processing methods to reduce the noise from the tissues and the system. This module is adaptive to different imaging systems because of these methods’ intrinsic characteristics. Meanwhile, the parameters are decided based on the property of data being denoised. In this module, firstly data length is limited because each system has its own imaging depth capacity and data outside is mostly noise. Data is filtered in frequency domain in accordance with bandwidth of the imaging system and the image is filtered with the Wiener adaptive filter. Secondly data is presented in time-frequency domain with different time-frequency analysis methods. With the aid of this presentation in time-frequency domain, we can decide denoising parameters based on the characteristics of denoised data. Thirdly data is denoised using wavelet and empirical mode decomposition (EMD) methods. These methods demonstrate strong denoising capacity in the data processing field and are very suitable for processing data from biological tissues. With decided parameters, wavelet and EMD methods are set down and data is denoised automatically to get the best imaging effect instead of processing each data manually with different methods. This denoising module improves the imaging quality and has adaptive ability to reach promising result for different PAM imaging systems.
Quantitative analysis of optical clearing effects (OCE) induced by hyperosmotic agents is very important to optical tissue clearing applications in biomedical diagnostic imaging and therapeutics. This study aims at investigating the effect of glycerol concentration on the laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) imaging contrast and light penetration depth. The photoacoustic (PA) signal amplitude changes are evaluated as a function of the concentration of glycerol. The results reveal that the PA signal amplitudes are enhanced with the glycerol concentration increasing, and also show that higher concentration of glycerol produces better light penetration and OCE on a phantom. The PA signal amplitude increases only 8.1% for 20% glycerol, but for higher concentrations, the increases are 76% and 165% for 40% and 60% glycerol, respectively. This preliminary study demonstrates that application of glycerol as an optical contrast agent reduces the tissue scattering and is beneficial to PAM imaging and optical diagnosis in clinical dermatology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.