The Rockets for Extended-source X-ray Spectroscopy (tREXS) is a suborbital rocket program that uses a wide-field grating spectrograph to obtain spectroscopic data on extended, soft-X-ray sources. The multi-channel tREXS spectrograph uses passive, mechanical focusing optics and stacks of reflection gratings to achieve a spectral resolution of R ≈ 50 from ≈15 – 40 Å over a >10 deg2 field of view. The dispersed spectra are read out by an array of 11 X-ray CMOS detectors that form a 97-megapixel focal-plane camera. tREXS was launched for the first time in September, 2022 to observe the Cygnus Loop supernova remnant. Though a failure in the rail pumping system led to a non-detection of emission from the Cygnus Loop during the flight, the rest of the instrument performed nominally and was recovered successfully. We present here an update on the instrument, results from the first flight, and a discussion of the future outlook.
The BlackCAT observatory makes use of a 6U CubeSat platform with an x-ray coded aperture telescope payload. BlackCAT, utilizing its wide field-of-view (0.9 steradians), will monitor deep space for a variety of x-ray transients and flares, with a primary focus on high redshift gamma-ray bursts. The payload consists of a detector module (DM), a dedicated electronics package, mechanical mounts, and thermal straps for passive cooling. The DM includes the DM housing, coded aperture mask, optical blocking filter (OBF), and a focal plane array (FPA) consisting of four x-ray hybrid CMOS detectors (HCDs). Each of these four detectors is a 550×550-pixel Speedster-EXD silicon sensor with a molybdenum package to provide a low-strain thermal and mechanical mounting structure. The primary purpose of the electronics package is reading out and processing data from the HCDs. For optimal scientific performance, the FPA must be maintained at a temperature of -40°C or below. The detectors have an aluminum OBF directly deposited because the silicon detectors are sensitive to optical light. For additional optical blocking against the brightest optical background and UV light, a separate OBF will be mounted in front of the detector surface. The coded aperture mask is a wire mesh made of nickel with a thin layer of gold coating all sides. The mask allows approximately 40% of incident x-rays to strike the detector in a unique pattern that is dependent upon source position and the open cell geometry. This allows for the angular position of the source to be determined to sub-arcminute precision. To prevent deformation due to thermal strain, the mask is required to maintain a set temperature between 10°C and 20°C. The DM housing acts as the primary support structure for the payload and is thick enough to provide shielding from off-axis x-rays and optical/UV light. The OBF is directly connected to the DM housing, while the mask and FPA are both thermally isolated via standoffs to meet respective temperature requirements. Additionally, the DM housing is the interface between the payload components and the chassis. We present an overview of the mechanical and thermal payload requirements, as well as design constraints imposed by the 6U CubeSat form factor. We describe the designs used to meet these requirements and present analyses to demonstrate the efficacy of these designs. The mechanical requirements and information from thermal analyses will drive the overall design of the BlackCAT CubeSat to achieve the science goals throughout the mission lifetime.
The BlackCAT CubeSat will monitor the soft x-ray sky, searching for high-redshift gamma-ray bursts (GRBs), gravitational-wave counterparts, and other high-energy transient events. BlackCAT will utilize a coded-aperture mask to localize sources to sub-arcminute precision. We investigate the primary forms of background that will affect this mission and present different methods to suppress these sources in order to increase the sensitivity of this mission. In the absence of mitigation, the optical and ultraviolet backgrounds could increase noise in the hybrid CMOS detectors (HCDs) used in this mission and potentially trigger spurious events. We plan to use a polyimide filter to suppress extreme ultraviolet emission produced by the geocorona. The HCDs and polyimide filter will be coated with a thin aluminum layer to block optical light. We estimate the magnitude of the observed cosmic and galactic X-ray backgrounds. Additionally, we investigate the impact of trapped particles on the sensitivity and duty cycle of the mission. We discuss the effect of these various sources of background on the sensitivity of BlackCAT to GRBs and other transient events.
The focal-plane camera on the Rockets for Extended-source X-ray Spectroscopy (tREXS) is a large-area detector array that takes advantage of the large-format, 3-side-buttable design of the Teledyne e2v Vega-CIS113 CMOS sensor. This paper discusses the initial design of the focal plane camera, results from testing that identified read noise performance issues, mechanical and electrical challenges of this initial design, and supply chain problems. The changes to the focal plane camera that were made due to these challenges are then presented, along with the final flight camera that has been designed to optimize noise performance and be able to be built within the schedule constraints of the tREXS mission.
The Rockets for Extended-source X-ray Spectroscopy (tREXS) are a funded series of sounding rocket instruments to detect diffuse soft X-ray emission from astrophysical sources. The first launch of tREXS is scheduled for Q4 2021, with a goal to observe the Cygnus Loop supernova remnant. tREXS house a four-channel grating spectrometer that uses passive, mechanical focusers, arrays of reflection gratings, and an extended focal plane based around Teledyne CIS 113 CMOS sensors. We present here an update on the instrument design, build, and calibrations in advance of the launch later this year.
The Rocket for Extended-Source X-ray Spectroscopy (tREXS) is a suborbital rocket payload that is designed to obtain the most highly resolved soft X-ray emission spectrum from the Cygnus Loop to date. This research will discuss the development and implementation of a guidance system that will replace the traditional pointing mechanism for a sub-orbital payload. Normally the pointing requirement for a sub-orbital flight is achieved using a NSROC altitude control system, which uses an ST5000 star tracker co-aligned with the X-ray optic. In tREXS design there is not space to use this star tracker; therefore, a design has been made that utilizes a side looking ST5000 to acquire the target field and an aspect camera for fine pointing. The aspect camera will stream frames of the target star field, that will be processed by the guidance algorithm. The algorithm will relay where to position the payload to target the Cygnus Loop.
The Rockets for Extended-source X-ray Spectroscopy (tREXS) are a series of suborbital rocket payloads being developed at The Pennsylvania State University. The tREXS science instrument is a soft X-ray grating spectrometer that will provide a large field-of-view and unmatched spectral resolving power for extended sources. Each instrument channel consists of a passive, mechanical focusing optic and an array of reflection gratings. The focal plane consists of an array of CIS113 CMOS sensors. tREXS I is currently in the design phase and is being developed for a launch in 2021 to observe diffuse soft X-ray emission from the Cygnus Loop supernova remnant. An analysis of instrument optics, gratings, and focal plane camera is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.