Due to its unique optoelectronic properties, the quantum dot (QD) has become a promising material for realizing photonic components and devices with high quantum efficiencies. Quantum dots in colloidal form can have their surfaces modified with various molecules, which enables new fabrication process utilizing molecular self-assembly and can result in new QD photonic device structures in nano-scale. In this review paper, we describe QD waveguides for sub-diffraction-limit waveguiding, nano-scale QD photodetectors for sensing with high spatial resolution and sensitivity, as well as integration of these two nanophotonic components. The paper will provide an overview on the operating principles, fabrications and characterizations of the devices. The QD waveguide achieved a transmission loss of 3 dB/4 micron, which is lower than the experimental results from other sub-diffraction limit waveguides that have been reported. It also demonstrated a comparable waveguiding effect through a waveguide with a sharp bend. The QD photodetector showed a sensitivity of 60 pW over a device with a nano-gap of 25 nm for detection. The compatibility between the fabrication processes for these two components with colloidal QDs allows integration of them through self-assembly fabrications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.