The increasing incidence of laryngeal carcinomas requires approaches for early diagnosis and treatment. In clinical practice, white light endoscopy of the laryngeal region is typically followed by biopsy under general anesthesia. Thus, image based diagnosis using optical coherence tomography (OCT) has been proposed to study sub-surface tissue layers at high resolution. However, accessing the region of interest requires robust miniature OCT probes that can be forwarded through the working channel of a laryngoscope. Typically, such probes generate A-scans, i.e., single column depth images, which are rather difficult to interpret. We propose a novel approach using the endoscopic camera images to spatially align these A-scans. Given the natural tissue motion and movements of the laryngoscope, the resulting OCT images show a three-dimensional representation of the sub-surface structures, which is simpler to interpret. We present the overall imaging setup and the motion tracking method. Moreover, we describe an experimental setup to assess the precision of the spatial alignment. We study different tracking templates and report root-mean-squared errors of 0.08mm and 0.18mm for sinusoidal and freehand motion, respectively. Furthermore, we also demonstrate the in-vivo application of the approach, illustrating the benefit of spatially meaningful alignment of the A-scans to study laryngeal tissue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.