Coupling between excitons belonging to organic dyes and photons in a microcavities forming cavity polaritons have been receiving attention for their fundamental interest as well as potential applications in coherent light sources. Organic materials are of particular interest as the coupling is particularly strong due to the large oscillator strength of conjugated organic molecules. The resulting coupling in organic materials is routinely in the strong regime. Ultrastrong coupling between photons and excitons in microcavities containing organic dyes and semiconductors has been recently observed in room temperature. We have studied the coupling between cavity pairs in the ultrastrong regime and found that the high order terms in the modified Jaynes-Cummings model result in broken degeneracy between the symmetric and antisymmetric modes.
The unusually strong coupling between cavity photons and organic excitons dovetail with the robust nonlinear optical responses of the same materials. This provides a new and promising hybrid material for photonics. We report on measurements of photorefraction in organic cavities containing a derivative of the photorefractive organic glass based on 2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF).
We study the effects of temperature changes on the operating wavelength of all-polymer microresonator lasers, particularly on multilayered defect distributed feedback and distributed Bragg reflector lasers. The parameters that change the operating wavelength are discussed with comparisons between experiments and simulations.
We review a model that was developed to take into account all possible microscopic cascading schemes in a single
species system out to the fifth order using a self-consistent field approach. This model was designed to study the
effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the
macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to
volume ratio, while the microscopic structure influences the local field from all other molecules in the system.
In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently
underway.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.