We will report on recent advances in fabrication of large volume silica based, doped fiber preform materials synthesized via powder-based processes.
Recently, there has been increased interest for power scaling in fiber based laser applications that requires large core volumes with excellent homogeneity in refractive indices, but also chemical variety (in terms of high dopant concentrations, different dopants). A structural fiber variety requires dedicated large volume core material of reproducible and tailorable chemical composition.
Established technologies such as modified chemical vapor deposition (MCVD) or crucible melting rely on complex thermal processing, and are limited in accessible chemistries, dopant concentration, achievable functionalities, and in case of MCVD in achievable core sizes. The current process development thus targets to overcome such draw-backs by including novel approaches to enable extreme material combinations, enhanced reactivity, or novel functions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.