The exploration of solar system bodies is now for decades a focus of activities of space agencies around the world. The motivation ranges from gaining a better understanding of the geology of e.g. planets and moons to the search for traces of (former) life. The developed spectroscopic sensors reach from passive infrared spectrometers employed e.g. on orbiters to active laser spectroscopies such as NIR spectroscopy, Raman spectroscopy or Laser-Induced Breakdown Spectroscopy employed on robotic missions. Space, weight and power restrictions as well as robustness against harsh environmental conditions are inherent prerequisites for space missions and lead to specific design solutions for these instruments. In this review an overview is given, presenting the application and design of selected spectroscopic sensors and techniques employed in past missions. Thereafter, emerging sensors concepts and technologies are presented which are currently investigated for use in future space missions.
TELBE is the first operational super-radiant quasi-cw SRF accelerator-based user facility for selective THz control experiments. Ultrafast dynamics, selectively driven by tunable narrow-band THz pulses, can be studied at unprecedented repetition rates. Research opportunities of this new type of photon facility are discussed based on early-stage experiments at TELBE.
This talk advertises scattering-type scanning near-field infrared micro-spectroscopy (s-SNIM) in the spectral range of 75 to 1.3 THz [1], as provided by the free-electron laser FELBE, the narrow-band laser-light source at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany. We demonstrate the -independent s-SNIM resolution of a few 10 nm by exploring structured Au samples, Graphene-transistors, meta-materials [2], and local ferroelectric phase-transitions down to LHe [3]. s-SNIM secondly was integrated into a THz pump-probe experiment for the inspection of excited states in structured SiGe samples. We developed a novel demodulation technique with high temporal resolution [4] hence achieving an excellent Signal-to-Noise Ratio. Thirdly using the super-radiant TELBE light source [5], HZDR recently extended the wavelength range down to 100 GHz radiation. We adapted our s-SNIM to this TELBE photon-source as well, achieving an equally high spatial resolution as with FELBE. Moreover, the superb 30-fs temporal resolution of TELBE will allow us to study a multitude of physical phenomena with sub-cycle resolution [5,6], such as spin-structures, magnons and phonon polaritons.
[1] F. Kuschewski et al., Appl. Phys. Lett. 108 (2016) 113102.
[2] S.C. Kehr et al., ACS Photonics 3 (2016) 20.
[3] J. Döring et al., Appl. Phys. Lett. 105 (2014) 053109.
[4] F. Kuschewski et al., Sci. Rep. 5 (2015) 12582.
[5] B. Green et al., Sci. Rep. 6 (2016) 22256.
[6] S. Kovalev et al., Struct. Dyn. 4 (2017) 024301.
An overview is given about the state-of-the-art of superradiant THz sources with a particular emphasize on very recent developments towards compact facilities based on super-conducting RF accelerator technology which enable quasi-cw operation at high repetition rates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.