The hard X-/soft gamma-ray band is still not well explored in astrophysics in spite of several unanswered science questions that can only be settled in this energy band, such as the origin of the 511 keV positron annihilation line from the Galactic Center region. The main reason is that this band has been explored so far with non-focusing instruments, that can achieve a limited sensitivity and angular resolution. Our goal is the development of a focusing telescope based on a Laue lens made of bent crystals of Silicon and Germanium, that diffract photons in the 50-700 keV band, with unprecedented angular resolution and sensitivity to continuum spectrum and to lines. Here some result will be reported concerning the elastic bending of the crystals by pressing them on substrates with one of the two main surfaces worked in order to get the same curvature of the lens. This is achieved thanks to accurately anodic bonding them to these substrates, avoiding/without the use of glue, in such a way to satisfy the required angular orientation of the crystals in the lens.
A new detection system for X-/Gamma-ray broad energy passband detectors for astronomy has been developed. This system is based on Silicon Drift Detectors (SDDs) coupled with scintillator bars; the SDDs act as a direct detector of soft (<30 keV) X-ray photons, while hard X-/Gamma-rays are stopped by the scintillator bars and the scintillation light is collected by the SDDs. With this configuration, it is possible to build compact, position sensitive detectors with unprecedented energy passband (2 keV – 10/20 MeV). The X and Gamma-ray Imaging Spectrometer (XGIS) on board the THESEUS mission, selected for Phase 0 study for M7, exploits this innovative detection system. The Wide Field Monitor - Imager and Spectrometer (WFM-IS) of the ASTENA (Advanced Surveyor of Transient Events and Nuclear Astrophysics) mission concept consists of 12 independent detection units, also based on this new technology. For the WFM-IS, a coded mask provides imaging capabilities up to 150 keV, while above this limit the instrument will act as a full sky spectrometer. However, it is possible to extend imaging capabilities above this limit by alternatively exploiting the Compton kinematics reconstruction or by using the information from the relative fluxes measured by the different cameras. In this work, we present the instrument design and results from MEGAlib simulations aimed at evaluating the effective area and the imaging performances of the WFM-IS above 150 keV.
Hard-x/soft gamma-rays are probes of the most powerful phenomena in the universe. Unlike soft x-ray astrophysics, this band has benefited less from the technological advancement due to the difficulty to absorb this radiation and to the lack of focusing instrumentation. For these reasons the quest for innovative soft gamma-ray instrumentation is pressing and their effective recognition and realization are urgent. In this context, and in the framework of the AHEAD project, funded by the European Commission, the ASTENA experiment was proposed as an innovative mission concept to face some of the most debated questions in hard x-/gamma-ray astronomy. This effort will be done through the use of instruments based on groundbreaking technologies, capable of providing unprecedented broad energy passband in a wide field of view, high sensitivity observations and, at the same time, sub-arcminute localization of gamma-ray sources and polarimetric measurement. In this paper we describe the instruments on board ASTENA, the technologies involved, the performances achievable with their exploitation and their level of readiness.
Hard x-/soft gamma-ray astronomy (>100 keV) is a crucial field for the study of important astrophysical phenomena such as the 511 keV positron annihilation line in the galactic center region and its origin, gamma-ray bursts, soft gamma-ray repeaters, nuclear lines from SN explosions and more. However, several key questions in this field require sensitivity and angular resolution that are hardly achievable with present technology. A new generation of instruments suitable to focus hard x-/soft gamma-rays is necessary to overcome the technological limitations of current direct-viewing telescopes. One solution is using Laue lenses based on Bragg’s diffraction in a transmission configuration. To date, this technology is in an advanced stage of development and further efforts are being made in order to significantly increase its technology readiness level (TRL). To this end, massive production of suitable crystals is required, as well as an improvement of the capability of their alignment. Such a technological improvement could be exploited in stratospheric balloon experiments and, ultimately, in space missions with a telescope of about 20 m focal length, capable of focusing over a broad energy pass-band. We present the latest technological developments of the TRILL (technological readiness increase for Laue lenses) project, supported by ASI, devoted to the advancement of the technological readiness of Laue lenses. We show the method we developed for preparing suitable bent germanium and silicon crystals and the latest advancements in crystals alignment technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.