Molybdenum disulfide (MoS2) has emerged as a versatile two-dimensional material platform for many optical and optoelectronic applications due to its layer-dependent band structure, which can be tuned from direct to indirect by increasing the number of layers. In this work, the integration of MoS2 layers onto a D-shaped side-polished optical fiber has been demonstrated using an inkjet printing technique. We show that MoS2 devices exhibit a strong wavelength dependent transmission spectrum, with a transmittance dip of ~ –50 dB, which can be tuned from near to the mid-infrared wavelength regions by varying the printing paths. Exposure of the MoS2 device to deionized water has revealed that the wavelength position of dip changes by more than 70 nm in response to the mode’s interaction with the liquid. These results indicate that inkjet-printed MoS2 devices could find applications for the development of environmental gas or humidity sensors.
We present an experimental study on a flexible terahertz (THz) pipe PMMA waveguide. The attenuation loss of this pipe
at 3.1THz was 9.65dB/m. Further more, bending loss of the pipe waveguides was investigated. The experimental result
shows good transmission properties of the pipe.
The researches of single cell's control and operation are the hotspots in whole world. Among the various technologies,
the transmission of ectogenic genetic materials between cell membrane is very significant. Imitating the Chinese
traditional acupuncture therapy, a new ultrasonic resonance driving method, is imported to drive a cell's penetration
probe. A set of the single cell penetration system was established to perform this function. This system includes four
subsystems: driving part, micromanipulation part, observation and measurement part, and actuation part. Some fish egg
experiments indicate that this system is workable and effective.
We present simulation and experimental studies of a piezoelectrically actuated microdiaphragm air pump, which is characterized by thin structure, large flow, and low power consumption. A novel large-displacement actuation structure is designed for the air pump. A prototype of the micro air pump is fabricated by precise fabrication. Furthermore, studies of modeling, simulation, and experiments are carried out. The experimental and simulation results demonstrate that both the pump's flow and the amplitude of the actuation structure's motion depend on the frequency of the input voltage. The maximal values of the flow and the amplitude will be obtained when the frequency of the input voltage is equal to the actuation structure's first-order natural frequency. The diaphragm air pump has the best performance when it works in resonance mode. With 20-V input, the flow and the amplitude of the air pump are 4.5 ml/s and 0.00041 m, respectively, and the power consumption of the pump can be as low as 3.18 mW. With the advantages of large flow, thin structure, and low power consumption, the diaphragm air pump has great potential applications for air supply for microfuel cells or the cooling of electronic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.