Although nanotechnology has led to important advances in in vitro diagnostics, the development of nanosensors for in vivo molecular detection remains very challenging. Here, we demonstrated the proof‐of‐principle of in vivo detection of nucleic acid targets using a promising type of surface‐enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model (pig). The in vivo “smart tattoo” nanosensor used in this study employs the “inverse molecular sentinel” (iMS) detection scheme, which is a label-free homogeneous biosensing system based on a non-enzymatic DNA strand-displacement process and conformational change of stem-loop (hairpin) oligonucleotide probes upon target binding. In this study, plasmonics‐active nanostar was utilized as an efficient in vivo SERS sensing platform due to their tunable absorption bands in the near infrared region of the “tissue optical window. The results of this study illustrate the usefulness of SERS iMS nanosensors as an implantable skin‐based in vivo biosensing platform, providing a foundation for developments in continuous health status sensing, disease biomarker monitoring, and other clinical translation applications.
Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.