It is known that metasurfaces – two-dimensional structures consisted of periodically spaced nanoresonators of various shapes – can be used for spatial filtering of light, particularly for image processing applications. In this work, spatial Fourier filtering based on semiconductor metasurfaces is proposed to implement complex analog operations on the optical signal. We design, create and test a metasurface composed of silicon nanodisks implementing the convolution of an arbitrary image with a reference one. An ultrafast tunable Fourier filtering based on the gallium arsenide metasurface under femtosecond optical pumping is also proposed. The results of this study can be used to create a compact and lightweight optical devices for image processing applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.