Conventional trilayer schemes alleviate the decreasing photoresist budgets as well as satisfy the antireflection issues
associated with high NA imaging. However, a number of challenges still exist with standard trilayer processing, most
notable among which is the lack of broad resist compatibility and trade-offs associated with improving Si content, such
as stability and lithography performance. One way to circumvent these issues is to use a silicon hard mask coated over a
photoresist image of reverse tone to the desired pattern. Feasibility of this image reversal trilayer process was
demonstrated by patterning of trenches and contact holes in a carbon hard mask from line and pillar photoresist images,
respectively. This paper describes the lithography, pattern transfer process and materials developed for the image
reversal trilayer processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.