This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Input As2S3 solutions for the layer fabrications were prepared by dissolving As2S3 powder in n-propylamine in a concentration of 0.50 mol/l. These solutions were applied on glass slides by dip-coating method and obtained layers were thermally treated in vacuum at temperatures up to 180 °C. Similar procedure was used for As2S3 layers in multilayer stacks. Such stacks were fabricated by repeating the application of one porous silica layer prepared by the sol-gel method and one As2S3 layer onto glass slides or silica fibers (a diameter of 0.3 mm) by using the dip-coating method. It has been found that the curing process of the applied layers has to be carefully controlled in order to obtain stacks with three pairs of such layers.
Single arsenic and porous silica layers were characterized by optical microscopy, and by measuring their transmission spectra in a range of 200-2500 nm. Thicknesses and refractive indices were estimated from the spectra. Transmission spectra of planar multilayer stacks were measured, too. Interference bands have been determined from optical measurements on the multilayer stacks with a minimum transmittance of about 50% which indicates the possibility of using such stacks as reflecting mirrors.
The investigated Bragg fiber consisted of the 26um diameter silica core surrounded by three pairs of circular Bragg layers. Each pair is composed of one layer with a high and one layer with a low refractive index being characterized by a refractive-index contrast up to ~0.03. The 1064nm laser beam was focused by a telescope onto the fiber input face. The beam radius in the focal plane was 5um. The Bragg fiber output face was imaged by a 1:6 optical telescope on the CCD camera. The transmitted power and spatial beam profile were registered simultaneously for various offset from the fiber axis. After the fiber shortening, the measurement was repeated and the cut-back was performed. The lowest attenuation coefficient of 0.17dB/m corresponded to a core mode of the delivered laser radiation. In general, the attenuation was higher with a shift from the radial axis of the fiber symmetry. In the case of cladding mode excitation, the attenuation parameter shows a local minimum. This phenomenon was consistent with the refractive index profile of the tested Bragg fiber.
Preforms of the Bragg fiber in the form of tubes were prepared by the MCVD method. Germanium dioxide and phosphorous pentoxide were used as silica dopants for the high-index layers. The low-index layers were fabricated of silica slightly doped with phosphorous pentoxide. The last layer applied was the high-index one. Bragg fibers were drawn from the tubes under controlled temperatures around 2000 °C in order to obtain the fibers with designed dimensions of Bragg claddings and air cores. Results of characterization of prepared fibers with optical microscopy are presented in the paper. The transmittance and attenuation of the fibers at 632 nm were measured with a continuous-wave He-Ne laser as a light source. Spatial distributions of output beams from the fibers were also determined.
Preforms of the Bragg fibers in the form of a rod or tube have been prepared by the MCVD method using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. The fibers have been drawn from the preforms under controlled temperatures in order to obtain fibers with air or solid cores. Results of characterization of prepared fibers with optical microscopy and by measuring their refractive-index profiles, losses and angular distributions of the output optical power are presented. The characterization of fibers for delivery radiation of a Nd:YAG laser with nanosecond pulses at 1060 nm, namely the transmission, attenuation coefficient, spatial profiles of transmitted beams, and bending losses are also presented. Fiber damage thresholds in a range 25-30 GW/cm2 have been determined.
View contact details
No SPIE Account? Create one