We present an experimental design to independently pump two soft X-ray laser media suitable for a seed-amplifier
configuration. Both the seed and the amplifier target are operated in the TCE scheme utilizing the DGRIP technique with
its intrinsic travelling wave excitation. Controlled injection of the seed X-ray laser into the amplifier medium is realized
via a spherical XUV mirror. The experimental design is perfectly appropriate for benchmarking combined simulations of
the ARWEN and DeepOne code. A first experiment at the PHELIX laser utilizing this scheme has been conducted,
demonstrating signs of amplification and allowing for the direct measurement of the gain life time of a Ni-like silver
SXRL.
The demonstration of a 7.36 nm Ni-like Sm soft x-ray laser pumped by 36 J of a Nd:glass chirped pulse amplification laser is presented. Double-pulse single-beam non-normal incidence pumping was applied for the efficient soft x-ray laser generation. Here the applied technique included a new single optic focusing geometry for large beam diameters, a single-pass grating compressor traveling-wave tuning capability and an optimized high energy laser double-pulse. This scheme has the potential for even shorter wavelength soft x-ray laser pumping.
The PHELIX laser at the GSI Helmholtz center for heavy-ion research is dedicated to provide high energy, ultra-intense laser pulses for experiments in combination with energetic ion beams. Development of x-ray lasers is targeting a number of applications in this context, including x-ray laser spectroscopy of highly-charged ions, and Thomson scattering diagnostics of heavy-ion driven plasmas. Recent developments centered on the application of a novel double-pulse
pumping scheme under GRIP-like, non-normal incidence geometry for both the pre- and the main pulse for transient pumped Ni-like lasers. This scheme considerably simplifies the set-up, and provides a very stable pumping situation even at low pump energies close to the lasing threshold. The technique was scaled to pulse energies above 100 J for the pumping of shorter wavelength x-ray lasers. In addition, a slightly tunable high-harmonic source using a split-off beam from the Nd:Glass pre-amplifier of PHELIX was developed as a seeding source.
D. Javorkova, P. Neumayer, Th. Kühl, S. Borneis, E. Brambrink, C. Bruske, E. Gaul, S. Götte, T. Hahn, H. Heuck, S. Kunzer, T. Merz, D. Reemts, M. Roth, F. Schrader, A. Tauschwitz, R. Thiel, D. Ursescu, P. Wiewior, B. Zielbauer
With PHELIX (Petawatt High Energy Laser for heavy Ion EXperiments) a high energy/ultra-high intensity
laser system is currently under construction at the GSI (Gesellschaft für SchwerIonenforschung, Germany). In
combination with the high current high energy ion accelerator facility this will provide worldwide unique experimental
opportunities in the field of dense plasma physics and inertial fusion research. In the long pulse mode the laser system
will provide laser pulses of up to 5 kJ in 1-10 ns pulses. In the high intensity mode pulse powers in excess of 1 PW will
be achieved. For this the well known technique of chirped pulse amplification (CPA) will be implemented. A new CPA
stretcher-compressor setup for the PHELIX laser was calculated and designed. A 4-pass single-grating stretcher and
a 4-pass single-grating test compressor, both with a full transmission bandwidth of 16 nm, as well as the compact
single-pass compressor for the final pulse compression will be presented. Spatial chirp and spectral phase aberrations of
the stretcher were optimized. We discuss the dependence of critical alignment tolerances on the angle of incidence and
show the effects on the temporal pulse shape.
We review our recent progress in the development of transient x-ray lasers and of their application to plasma diagnostic. The first observation of C-ray laser emission at the new PHELIX-GSI facility is reported. This TCE X-ray laser will be a promising tool for heavy-ion spectroscopy. We then present the main results obtained at the LULU-CPA facility with a compact high-resolution X-UV imaging device. This device was used to investigate the spatial source structure of the Ni-like silver transient X-ray laser under different pumping conditions. The key-role of the width of the background laser pulse on the shape of the emitting aperture is demonstrated. Finally the imaging device was used as an interference microscope for interferometry probing of a laser-produced plasma. We describe this experiment performed at APRC-JAERI.
The Gesellschaft fuer Schwerionenforschung (GSI, Society for Heavy Ion Research) is currently the leading facility in the production of radioactive isotopes. Nuclear properties like charge radii, spin, and magnetic moments of exotic nuclei provide important data for testing of nuclear models. These properties are usually accessed by laser spectroscopy, which requires photon energies of around 100 eV in the case of lithium-like ions. We propose to use a transient gain X-ray laser (XRL) at the experimental storage ring (ESR) to perform this kind of spectroscopy. In this article we describe the planned experiments and give an overview of the current construction at GSI.
M. Roth, Bruno Becker-de Mos, R. Bock, Stefan Borneis, Herbert Brandt, C. Bruske, John Caird, E. Dewald, C. Haefner, D. Hoffmann, Mikhail Kalachnikov, H.-J. Kluge, Ferenc Krausz, Thomas Kuehl, Grant Logan, Dieter Marx, Paul Neumayer, Peter Nickles, M. Perry, K. Poppensieker, Irene Reinhard, Wolfgang Sandner, Roland Sauerbrey, A. Tauschwitz, Ingo Will
The unique combination of an intense heavy ion beam accelerator and a high energy laser opens the possibility of exploring new physics taking advantage of the synergy of both facilities. A variety of new fields can be addressed with this combination in plasma physics, atomic physics, nuclear- and astro-physics as well as material research. In addition, using CPA-technology, laser pulses with a pulse power of up to a petawatt opens the door to explore the regime of fully relativistic plasmas. Therefore the Gesellschaft fuer Schwerionenforschung is augmenting the current high intensity upgrade of the heavy ion accelerator facility with the construction of PHELIX. Designed with two pulse-generating front ends and send to multiple experimental areas PHELIX will serve as a highly versatile laser system for various applications. In this report, we present the design of the laser system and some key experiments that can be performed with this combination for the first time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.