Recent studies showed that the excitation spectral window lying between 1.6 and 1.8 μm is optimal for in-depth three-photon microscopy of intact tissues due to the reduced scattering and absorption in this wavelength range. Hence, millimeter penetration depth imaging in a living mouse brain has been demonstrated, demonstrating a major potential for neurosciences.
Further improvements of this approach, towards much higher imaging frame rates (up to 15-20 s/frame in previous achievements) requires the development of advanced molecular optical probes specifically designed for three-photon excited fluorescence in the 1.6 -1.8 μm spectral range.
In order to achieve large three-photon brightness at 1700 nm, novel molecular-based fluorescent nanoparticles which combine strong absorption in the green-yellow region, remarkable stability and photostability in aqueous and biological conditions have been designed using a bottom-up route. Due to the multipolar nature of the dedicated dyes subunits, these nanoparticles show large nonlinear absorption in the NIR region.
These new dyes have been experimentally characterized through the measurement of their three-photon action cross-section, fluorescence spectra and lifetimes using a monolithically integrated high repetition rate all-fiber femtosecond laser based on soliton self-frequency shift providing 9 nJ, 75 fs pulses at 1700 nm. The main result is that their brightness could be several orders of magnitude larger than the one of Texas Red in the 1700 nm excitation window.
Ongoing experiments involving the use of these new dyes for in vivo cerebral angiography on a mouse model will be presented and the route towards three-photon endomicroscopy will be discussed.
Fluorescence lifetime imaging microscopy (FLIM) represents a powerful tool for biological studies. Endoscopic FLIM applied to the intracellular native biomarker NADH and FAD represents a promising mean for in vivo in situ malignant tissue diagnosis in the medical field. Else, 2-photon-excited fluorescence (2PEF) provides increased 3D resolution and imaging depth. But very few demonstrations about 2PEF lifetime measurement through a fiber have been reported and none about endoscopic 2P-FLIM through a practical fiber length (< 3m).
Our group has recently demonstrated the possibility to efficiently deliver through a very long optical fiber the short and intense excitation pulses required for 2P-FLIM. Our goal is now to check that collecting fluorescence through the same endoscopic fiber does not deteriorate the lifetime measurement. Relying on the basis previously published in case of 1PEF by P. French and co-workers (J. Biophotonics, 2015), we have experimentally quantitatively evaluated the influence on the lifetime measurement of the fiber chromatic and intermodal dispersions. The main result is that the fiber contribution to the system impulse response function, even in the case of a 3-meter long double-clad optical fiber, does not hinder the separation between free and bound NADH states using FLIM. Related calibrations and measurements will be detailed. Ongoing experiments about the development of a 2P-FLIM endomicroscope on the basis of an previously reported 2P-endomicroscope (Ducourthial et al., Sc. Reports, 2015), used under various configurations (i.e. point measurement in the center of the 2P-endomicroscope image, averaged lifetime, binned endoscopic 2P-FLIM image), will be also presented.
Multiphoton microscopy is a cutting edge imaging modality leading to increasing advances in biology and also in the clinical field. To use it at its full potential and at the very heart of clinical practice, there have been several developments of fiber-based multiphoton microendoscopes. The application for those probes is now limited by few major restrictions, such as the difficulty to collect autofluorescence signals from tissues and cells theses being inherently weak (e.g. the ones from intracellular NADH or FAD metabolites). This limitation reduces the usefulness of microendoscopy in general, effectively restraining it to morphological imaging modality requiring staining of the tissues. Our aim is to go beyond this limitation, showing for the first time label-free cellular metabolism monitoring, in vivo in situ in real time.
The experimental setup is an upgrade of a recently published one (Ducourthial et.al, Scientific Reports, 2016) where femtosecond pulse fiber delivery is further optimized thank’s to a new transmissive-GRISM-based pulse stretcher permitting high energy throughput and wide bandwidth. This device allows fast sequential operation with two different excitation wavelengths for efficient two-photon excited NADH and FAD autofluorescence endoscopic detection (i.e. 860 nm for FAD and 760 nm for NADH), enabling cellular optical redox ratio quantification at 8 frames/s.
The obtained results on cell models in vitro and also on animal models in vivo (e.g. neurons of a living mouse) prove that we accurately assess the level of NADH and FAD at subcellular resolution through a 3-meters-long fiber with our miniaturized probe (O.D. =2.2 mm).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.